Skip to main content

Modelling the Interaction Between the Atmospheric Boundary Layer and Evaporating Sea Spray Droplets

  • Chapter
Air-Sea Exchange: Physics, Chemistry and Dynamics

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 20))

Abstract

Mariners have long been aware of the ability of strong winds at sea to generate large amounts of spray, and its occurrence even forms part of the definition of the Beaufort wind scale. More recently, scientific curiosity about the contribution of sea spray to sea-air fluxes of heat and water vapour has led to significant progress in their quantification. Yet the fact that this is a difficult field and that there remain large gaps in our understanding of it is perhaps best illustrated by the recent, and at times heated, exchanges in the literature (Hasse 1992; Andreas 1994a; Katsaros, De Leeuw 1994; Andreas 1994b; Andreas et al. 1995; Andreas, DeCosmo this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andreas, E.L. (1989) Thermal and size evolution of sea spray droplets. CRREL Rep. 89–11, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N.H., 37pp.

    Google Scholar 

  • Andreas E.L. (1990) Time constants for the evolution of sea spray droplets. Tellus, 42B, 481–497.

    Google Scholar 

  • Andreas E.L. (1992) Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11429–11441.

    Article  Google Scholar 

  • Andreas E.L. (1994a) Comments on “On the contribution of spray droplets to evaporation” by L. Hasse, Bound.-Layer Meteorol., 68, 207–214.

    Google Scholar 

  • Andreas E. L. (1994b) Reply to Katsaros and De Leeuw. J. Geophys. Res., 99, 14345–14350.

    Article  Google Scholar 

  • Andreas E.L. (1995) The temperature of evaporating sea spray droplets. J. Atmos. Sci., 52, 852–862.

    Article  Google Scholar 

  • Andreas, E.L., Edson, J.B., Monahan, E.C., Rouault, M.P., Smith, S.D. (1995) The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteorol., 72, 3–52.

    Article  Google Scholar 

  • Andreas E.L. (1998) A new sea spray generation function for wind speeds up to 32 m/s. J. Phys. Oceanogr., in press.

    Google Scholar 

  • Bender, M.A., Ginis, I., Kurihara, Y. (1993) Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophy. Res., 98D, 23245–23263.

    Article  Google Scholar 

  • Bengtsson, L., Botzet, M., Esch, M. (1996) Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A, 57–73.

    Google Scholar 

  • Betts, A.K. (1973) Non-precipitating cumulus convection and its parameterisation. Quart.J. Royal Meteor. Soc.. 99, 178–196.

    Article  Google Scholar 

  • Betts, A.K., Simpson, J. (1987) Thermodynamic budget diagrams for the hurricane subcloud layer. J. Atmos. Sci.. 44. 842–849.

    Article  Google Scholar 

  • Black, P.G., Holland, G.J., Pudov, V. (1993) Observations of air-sea temperature difference in tropical cyclones as a function fo wind speed. In BMRC Research Report 46: Parameterisation of Physical Processes: Papers presented at the Fifth BMRC Modelling Workshop, Melbourne, Australia. Available from BMRC GPO Box 1289K, Melbourne Victoria 3001, Australia.

    Google Scholar 

  • Blanc, T.V. (1985) Variation of bulk-derived surface flux, stability, and roughness results due to the use of different transfer coefficient schemes.. J. Phys. Oceanogr., 15, 650–669.

    Article  Google Scholar 

  • Black, P.G, Holland, G.J. (1995) The boundary layer of tropical cyclone Kerry (1979). Mon. Wea. Rev., 123,

    Google Scholar 

  • Blumberg, A.F., Mellor, G. L. (1987) A description of a three-dimensional ocean circulation model. Three-Dimensional Coastal Ocean Circulation Models, vol. 4, edited by N.S. Heaps, American Geophysical Union, Washington, D.C., 280 pp.

    Google Scholar 

  • Cione, JJ., Black, P.G. (1998) Surface thermodynamic observations within the tropical cyclone inner core. Papers presented at the 1998 Annual Meeting of the American Meteorological Society, Hurricane Intensity Symposium. Available online at http://www.aoml.noaa.gov/hrd/tcint98/AMS98_PI_29.pdf

    Google Scholar 

  • Clarke, R.H., Dyer, A.J., Brook, R.R., Reid, D.G., Troup, A.J. (1971) The Wangara Experiment: Boundary Layer Data. Tech. Paper 19, Div. Meteor. Phys., CSIRO, Australia.

    Google Scholar 

  • Clayson, C.A., Curry, J.A., Fairall, C.W. (1995) Evaluation of turbulent fluxes at the ocean surface using surface renewal theory. J. Geophys. Res., 101, 28503–28513.

    Article  Google Scholar 

  • Davidson, K.L., Schutz, L. (1983) Observational results on the influence of surface layer stability and inversion entrainment on surface layer marine aerosol number density. Opt. Eng., 22, 45–49.

    Article  Google Scholar 

  • Deardorff, J.W. (1976) Usefulness of liquid-water equivalent potential temperature in a shallow-cloud model. J. Appl. Meteor., 15, 98–102.

    Article  Google Scholar 

  • Deardorff, J.W. (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteor., 18, 495–527.

    Article  Google Scholar 

  • DeCosmo, J., Katsaros, K.B., Smith, S.D, Anderson, R.J., Oost, W.A., Bumke, K., Chadwick, H. (1996) Airsea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophvs. Res., 101, 12001–12016.

    Article  Google Scholar 

  • De Leeuw, G. (1986a) Vertical profiles of giant particles close above the sea surface. Tellus, 38B, 51–61.

    Article  Google Scholar 

  • De Leeuw, G. (1986b) Size distributions of giant aerosol particles close above sea level. J. Aerosol Sci., 17, 293–296.

    Article  Google Scholar 

  • De Leeuw, G. (1987) Near-surface particle size distribution profiles over the North Sea. J. Geophys. Res., 92C, 14631–14635.

    Article  Google Scholar 

  • De Leeuw, G. (1989) Investigations on turbulent fluctuations of particle concentrations and relative humidity in the marine atmospheric surface layer. J. Geophys. Res., 94C, 3261–3269.

    Article  Google Scholar 

  • De Leeuw, G. (1990a) Profiling of aerosol concentrations, particle size and relative humidity in the atmospheric surface layer over the North Sea. Tellus., 42B, 342–354.

    Google Scholar 

  • De Leeuw, G. (1990b) Comment on “Vertical distribution of spray droplets near the sea surface of jet drop ejection and surface tearing”. J. Geophys. Res., 95, 9779–9782.

    Article  Google Scholar 

  • Earle, M.D. (1979) Practical determinations of design wave conditions, in Ocean Wave Climate, edited by M.D. Earle and A. Malahoff, pp 39–60, Plenum, New York.

    Chapter  Google Scholar 

  • Edson, J.B., Fairall, C.W., Larsen, SE., Mestayer, P.G. (1988) A random walk simulation of the turbulent transport of evaporating jet drops in the air-sea simulation tunnel during HEXIST. Proc. 7 th h Conf. On Ocean-Atmosphere Interaction, AMS, Anaheim, CA, 9–13.

    Google Scholar 

  • Edson, J.B., Fairall, C.W. (1994) Spray droplet modeling. I: Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res., 99, 25229–25311.

    Article  Google Scholar 

  • Edson, J.B., Anquetin, S., Mestayer, P.G., Sini, J.F. (1996) Spray droplet modelling. 2: An interactive eulerian-lagrangian model of evaporating spray droplets. J. Geophys. Res., 101, 1279–1293.

    Article  Google Scholar 

  • Emanuel, K.A. (1991) The theory of hurricanes. Ann. Rev. Fluid. Mech., 23, 179–196.

    Article  Google Scholar 

  • Emanuel, K.A. (1995) Sensitivity of tropical cyclones to surface exchange coefficients and a revised steadystate model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.

    Article  Google Scholar 

  • Fairall, C.W., Edson, J.B., Miller, M.A. (1990) Heat fluxes, whitecaps, and sea spray. In Surface Waves and Fluxes, Vol. 1, G. L. Geernaert and W.J. Plant (eds.), Kluwer, Dordrecht, pp 173–208.

    Chapter  Google Scholar 

  • Fairall, C.W., Kepert, J.D., Holland, G.J. (1994) The effect of sea spray on surface energy transports over the ocean. The Global Atmospheric Ocean System, 2, 121–142.

    Google Scholar 

  • Fairall, C.W., Bradley, E.F., Rogers, D.P., Edson, J.B., Young, G.S. (1996a) Bulk parameterization of air-sea fluxes in TOGA COARE. J. Geophys. Res., 101, 3747–3767.

    Article  Google Scholar 

  • Galperin, B., Kantha, L.H., Hassid, S., Rosati, A. (1988) A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci., 45, 55–62.

    Article  Google Scholar 

  • Garratt, J.R. (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, UK, 316 pp.

    Google Scholar 

  • Geernaert, G.L. (1990) Bulk parameterization for wind stress and the heat fluxes. In Surface Waves and Fluxes, Vol. 1, G. L. Geernaert and W. J. Plant (eds.), Kluwer, Dordrecht, pp 91–172.

    Chapter  Google Scholar 

  • Gerrity, J.P., Black, T.L., Treadon, R.E. (1994) The numerical solution of the Mellor-Yamada level 2.5 turbulent kinetic energy equation in the Eta model. Mon. Wea. Rev., 122, 1640–1646.

    Article  Google Scholar 

  • Gong, S.L., Barrie, L.A., Blanchet, J.-P. (1997) Modeling sea-salt aerosols in the atmosphere. I. Model development. J. Geophys. Res., 102, 3805–3818.

    Article  Google Scholar 

  • Girard, C., Delage, Y. (1990) Stable schemes for nonlinear vertical diffusion in atmospheric circulation models. Mon. Wea. Rev., 118, 737–745.

    Article  Google Scholar 

  • Grell, G.A., Dudhia, J., Stauffer, D. R. (1994) A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR/TN-398+IA, National Center for Atmospheric Research, Boulder, CO, 107 pp.

    Google Scholar 

  • Gunther, H., Hasselmann, S., Janssen, P.A.E.M. (1992) The WAM Model Cycle 4. DKRZ Technical Report No. 4, Hamburg, October 1992.

    Google Scholar 

  • Hasse, L. (1992) On the contribution of spray droplets to evaporation. Bound.-Layer Meteorol., 61, 309–313.

    Article  Google Scholar 

  • Helfand, H.M., LaBraga, J.C. (1988) Design of a nonsingular level 2.5 second order closure model for the prediction of atmospheric turbulence. J. Atmos. Sci., 45, 113–132.

    Article  Google Scholar 

  • Henderson-Sellers, A., Berz, G, Elsbeny, R., Emanuel, K., Gray, W.M., Landsea, C., Holland, G., Lighthill, J., Shieh, S.-L., Webster, P., Zhang, H. (1997) Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 19–38.

    Article  Google Scholar 

  • Holland G.J. (1997) The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.

    Article  Google Scholar 

  • Jassen, P.A.E.M. (1991) The quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 1631–1642.

    Article  Google Scholar 

  • Kaimal, J.C., Finnigan, J.J. (1994) Atmospheric Boundary Flows, Their Structure and Measurement. Oxford University Press, 289pp.

    Google Scholar 

  • Katsaros, K.B., de Leeuw, G. (1994) Comment on “Sea spray and the turbulent air-sea heat fluxes” by E.L. Andreas. J. Geophys. Res., 99, 14339–14343.

    Article  Google Scholar 

  • Kepert, J.D. (1996) Comments on “The temperature of evaporating sea spray droplets”. J. Atmos. Sci., 53, 1634–1645.

    Article  Google Scholar 

  • Kepert, J.D., Fairall, C.W. (1998) Influence of evaporating sea spray on marine boundary layer fluxes and dynamics. Part I: Structure of a numerical model. J. Geophys. Res., in preparation.

    Google Scholar 

  • Kinsman, B. (1965) Wind Waves, 676 pp., Prentice-Hall, Englewood Cliffs, NJ., 1965.

    Google Scholar 

  • Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Jassen, P.A.E.M. (1994) Dynamics and Modeling of Ocean Waves. Cambridge University Press, Cambridge, UK, 532 pp.

    Book  Google Scholar 

  • Korolev, V.S., Petrichenko, S.A., Pudov, V.D. (1990) Heat and moisture exchange between the ocean and atmosphere in tropical storms Tess and Skip. Meteorologiya i Gidrologiya, 2, 108–111. (English translation in Soviet Meteorology and Hydrology, 2, 92–94).

    Google Scholar 

  • Kraus, E.B., Businger, J.A. (1994) Atmosphere-Ocean Interaction. Oxford University Press, New York, 362 PP.

    Google Scholar 

  • Lighthill, J., Holland, G., Gray, W.M., Landsea, C., Craig, G., Evans, J., Kurihara, Y., Guard, C. (1994) Global climate change and tropical cyclones. Bull. Am. Met. Soc., 75, 2147–2157.

    Google Scholar 

  • Ling, S.C., Kao, T.W. (1976) Parameterisation of the moisture and heat transfer processes over the ocean. J. Phys. Oceanogr., 11, 324–336.

    Google Scholar 

  • Liu, Y., Zhang, D.-L., Yau, M.K. (1997) A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073–3093.

    Article  Google Scholar 

  • Makin, V.K. (1998) Air-sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res., 103, 1137–1152.

    Article  Google Scholar 

  • Mellor, G.L. (1977) The Gaussian cloud model relations. J. Atmos. Sci., 34, 356–358.

    Article  Google Scholar 

  • Mellor, G.L., Yamada, T. (1982) Developmetn of a turbulence closure model for geophysical fluid problems. Rev. Geophys. And Space Phys., 20, 851–875.

    Article  Google Scholar 

  • Mestayer, P.G., Van Eijk, A.M.J., De Leeuw, G., Tranchant, B. (1996) Numerical simulation of the dynamics of sea snrav over the waves. J. Geophys. Res., 101, 20771–20797.

    Article  Google Scholar 

  • Persson, P.O.G., Hare, J., Fairall, C.W., Ataturk, S., Katsaros, K. (1997) Air-sea interaction measurements during the Fronts and Atlantic Storms Tracks Experiment (FASTEX). Proc. 1e Symposium on Boundary Layers and Turbulence, AMS, Vancouver, BC, 28 July-1 August.

    Google Scholar 

  • Pruppacher, H.R., Klett, J.D. (1978) Microphysics of Clouds and Precipitation. D. Reidel Publishing Company, 714 pp.

    Book  Google Scholar 

  • Rouault, M.P., Mestayer, P.G., Schiestel, R. (1991) A model of evaporating spray droplet dispersion. J. Geonhvs. Res., 96, 7181–7200.

    Article  Google Scholar 

  • Slinn, S.A., Slinn, W.G.N. (1980) Predictions for particle deposition in natural waters. Atmospheric Environment, 14, 1013–1016.

    Article  Google Scholar 

  • Smith, S.D., Katsaros, K.B., Oost, W.A., Mestayer, P.G. (1989) Two major experiments in the humidity exchange over sea (HEXOS) program. Bull. Amer. Meteor. Soc., 71, 161–172.

    Article  Google Scholar 

  • Smith, S.D.(1990) Influence of droplet evaporation on HEXOS humidity and temperature profiles. In Modelling the Fate and Influence of marine Spray (Eds. P. Mestayer, E. C. Monahan, and P. A. Beetham). Whitecap Ret. 7. University of Connecticut, marine Sciences Institute, Groton, pp 171–174.

    Google Scholar 

  • Smith, S.D., Fairall, C.W., Geernaert, G.L., Hasse, L. (1996) Air-sea fluxes: 25 years of progress. Bound.Layer Meteorol., 78, 247–290.

    Article  Google Scholar 

  • Smolarkiewicz, P.K. (1983) A simple positive definite advection scheme with small implicit diffusion. Mon. Wea. Rev., 111, 479–486.

    Article  Google Scholar 

  • Sommeria, G., Deardorff, J.W. (1977) Subgrid-scale condensation in models of non-precipitating clouds. J. Atmos. Sci., 34, 344–355.

    Article  Google Scholar 

  • Toba, Y. (1965) On the giant sea-salt particles in the atmosphere. II — Theory of the vertical distribution in the 10-m layer over the ocean. Tellus, 17, 365–382. WAMDI (1988) The WAM Model — a third generation ocean wave prediction model. J. Phys. Oceanogr., 18, 1775–1810.

    Google Scholar 

  • Wilson, B.W. (1965) Numerical prediciton of ocean waves in the North Atlantic for December, 1959. Dtsch. Hydrogr. Z., 18, 114–130.

    Article  Google Scholar 

  • Wu, J. (1990) Vertical distribution of spray droplets near the sea surface: Influence of jet drop ejection and surface tearing. J. Geophys. Res., 95, 9775–9778.

    Article  Google Scholar 

  • Yelland, M., Taylor, P.K. (1996) Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26, 541–558.

    Article  Google Scholar 

  • Zhuang, Y., Lozowski, E.P., Wilson, J.D., Bird, G. (1993) Sea spray dispersion over the ocean surface: a numerical simulation. J. Geophys. Res., 98C, 16547–16553.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kepert, J., Fairall, C., Bao, JW. (1999). Modelling the Interaction Between the Atmospheric Boundary Layer and Evaporating Sea Spray Droplets. In: Geernaert, G.L. (eds) Air-Sea Exchange: Physics, Chemistry and Dynamics. Atmospheric and Oceanographic Sciences Library, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9291-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9291-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5308-4

  • Online ISBN: 978-94-015-9291-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics