Skip to main content

Advertisement

Log in

Detailed Cloud Microphysics Simulation for Investigation into the Impact of Sea Spray on Air-Sea Heat Flux

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper reports on the development of a numerical weather simulation model combined with a detailed spectral-bin cloud microphysics model that can explicitly consider the droplet motion and droplet-atmosphere interactions of sea spray. Sea spray is composed of liquid droplets ejected from the sea surface into the evaporation layer, where it enhances heat as well as momentum exchanges between the atmosphere and the sea. In our study, we analyzed the results of idealized 3D simulations to investigate the impact of sea spray on latent heat exchanges and their consequent impact on boundary layer cloud development. The results show that sea spray enhances the latent heat flux by up to 62 % for the surveyed 10m-height velocities, which ranged from 12 to 42 m/s. They also show that sea spray moistening significantly enhances boundary layer cloud development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Veron, F.: Ocean spray. Annual Rev. Fluid Mech. 47, 507–538 (2015)

    Article  Google Scholar 

  2. Seinfeld, J., Pandis, S.: Atmospheric Physics and Chemistry. From Air Pollution to Climate Change. Wiley (1998)

  3. Andreas, E.L., Emanuel, K.A.: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci. 58(24), 3741–3751 (2001)

    Article  Google Scholar 

  4. Liu, B., Liu, H., Xie, L., Guan, C., Zhao, D.: A coupled atmosphere-wave-ocean modeling system: simulation of the intensity of an idealized tropical cyclone. Month. Weather Rev. 139, 132–152 (2011)

    Article  Google Scholar 

  5. Andreas, E.L.: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res. Oceans (1978–2012) 97(C7), 11,429–11,441 (1992)

    Article  Google Scholar 

  6. Mueller, J.A., Veron, F.: A lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Boundary-Layer Meteorol. 130 (2), 229–247 (2009)

    Article  Google Scholar 

  7. Zonta, F., Marchioli, C., Soldati, A.: Direct numerical simulation of turbulent heat transfer modulation in micro-dispersed channel flow. Acta Mech. 195 (1–4), 305–326 (2008)

    Article  MATH  Google Scholar 

  8. Shpund, J., Zhang, J., Pinsky, M., Khain, A.: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2d explicit microphysical model. part ii: The role of sea spray. J. Atmos. Sci. 69(12), 3501–3514 (2012)

    Article  Google Scholar 

  9. Sasaki, W., Onishi, R., Fuchigami, H., Goto, K., Nishikawa, S., Ishikawa, Y., Takahashi, K.: MJO simulation in a cloud-system-resolving global ocean-atmosphere coupled model. Geophys. Res. Lett. doi:10.1002/2016GL070550 (2016)

  10. Takahashi, K., Onishi, R., Baba, Y., Kida, S., Matsuda, K., Goto, K., Fuchigami, H.: Challenge toward the prediction of typhoon behaviour and down pour. J. Phys. Conf. Ser. 454, 012–072 (2013)

    Google Scholar 

  11. Kageyama, A., Sato, T.: Yin-yang grid: An overset grid in spherical geometry. Geochem. Geophys. Geosyst. 5(9) (2004)

  12. Wicker, L.J., Skamarock, W.C.: Time-splitting methods for elastic models using forward time schemes. Month. Weather Rev. 130(8), 2088–2097 (2002)

    Article  Google Scholar 

  13. Toro, E.F.: A weighted average flux method for hyperbolic conservation laws. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, vol. 423, pp. 401–418 (1989)

  14. Onishi, R., Takahashi, K.: A warm-bin-cold-bulk cloud microphysical model. J. Atmosph. Sci. 69, 1474–1497 (2012)

    Article  Google Scholar 

  15. Zhao, D., Toba, Y., Sugioka, K., Komori, S.: New sea spray generation function for spume droplets. J. Geophys. Res. 111, C02,007 (2006)

    Google Scholar 

  16. Sugioka, K., Komori, S.: The effects of droplets on mass transfer in wind-driven turbulence with breaking waves. Trans. Jpn. Soc. Mech. Eng. Ser. B 71(701), 7–14 (2005)

    Article  Google Scholar 

  17. Zhao, D., Toba, Y.: Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr. 57(5), 603–616 (2001)

    Article  Google Scholar 

  18. Abel, S.J., Shipway, B.J.: A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during rico. QJR Meteorol. Soc. 133(624), 781–794 (2007)

    Article  Google Scholar 

  19. van Zanten, M.C., Stevens, B.B., Nuijens, L., Siebesma, A.P., Ackerman, A., Burnet, F., Cheng, A., Courvreux, F., Jiang, H., Khairoutdinov, M., Kogan, Y., Lewellen, D.C., Mechem, D., Nakamura, K., Noda, A., Shipway, B.J., Slawinska, J., Wang, S., Wyszogrodzki, A.: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during rico. J. Adv. Model. Earth Syst. 3, M06,001 (2011)

    Google Scholar 

  20. Matheou, G., Chung, D., Nuijens, L., Stevens, B., Teixeira, J.: On the fidelity of large-eddy simulation of shallow precipitating cumulus convection. Month. Weather Rev. 139(9), 2918–2939 (2011)

    Article  Google Scholar 

  21. Seifert, A., Heus, T.: Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. 13(1), 5631–5645 (2013)

    Article  Google Scholar 

  22. Seifert, A., Onishi, R.: Turbulence effects on warm rain formation in precipitating shallow convection revisited. Atmos. Chem. Phys. Discuss. (2016)

  23. Zonta, F., Soldati, A., Onorato, M.: Growth and spectra of gravity–capillary waves in countercurrent air/water turbulent flow. J. Fluid Mech. 777, 245–259 (2015)

    Article  Google Scholar 

  24. Komori, S., Kurose, R., Iwano, K., Ukai, T., Suzuki, N.: Direct numerical simulation of wind-driven turbulence and scalar transfer at sheared gas–liquid interfaces. J. Turb. 11, N32 (2010)

    Article  Google Scholar 

  25. Toba, Y., Chaen, M.: Quantitative expression of the breaking of wind waves on the sea surface. Rec. Oceanogr. Works Jpn. 12(1), 11 (1973)

    Google Scholar 

  26. Andreas, E.L., Edson, J.B., Monahan, E.C., Rouault, M.P., Smith, S.D.: The spray contribution to net evaporation from the sea: A review of recent progress. Boundary-Layer Meteorol. 72(1–2), 3–52 (1995)

    Article  Google Scholar 

  27. Mueller, J.A., Veron, F.: Impact of sea spray on air–sea fluxes. part i: Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr. 44 (11), 2817–2834 (2014)

    Article  Google Scholar 

  28. Rosenfeld, D., Woodley, W.L., Khain, A., Cotton, W.R., Carrió, G., Ginis, I., Golden, J.H.: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteorol. Soc. 93(7), 987–1001 (2012)

    Article  Google Scholar 

  29. Reisner, J., Rasmussen, R.M., Bruintjes, R.T.: Explicit forecasting of supercooled liquid water in winter storms using the mm5 mesoscale model. Q. J. R. Meteorol. Soc. 124(548), 1071–1107 (1998)

    Article  Google Scholar 

  30. Thompson, G., Rasmussen, R., Manning, K.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. part i: Description and sensitivity analysis. Month. Weather Rev. 132, 519 (2004)

    Article  Google Scholar 

  31. Fairall, C.W., Kepert, J.D., Holland, G.J.: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst. 2(2–3), 121–142 (1994)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (No. 25249013). The numerical simulations presented were carried out on the supercomputer system of the Japan Agency for Marine-Earth Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Onishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, R., Fuchigami, H., Matsuda, K. et al. Detailed Cloud Microphysics Simulation for Investigation into the Impact of Sea Spray on Air-Sea Heat Flux. Flow Turbulence Combust 97, 1111–1125 (2016). https://doi.org/10.1007/s10494-016-9766-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-016-9766-x

Keywords

Navigation