Skip to main content

Evaluation of Fully 3D Iterative Scatter Compensation and Post-Reconstruction Filtering In SPECT

  • Chapter
Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine

Part of the book series: Computational Imaging and Vision ((CIVI,volume 4))

Abstract

The accuracy of iteratively reconstructed SPECT images improves when better models of the image formation process are used. To assess effects of improved scatter modeling, a projector back-projector (proback) architecture has been developed which can compensate for attenuation, distance dependent collimator blur and anatomy dependent scatter, at different levels of accuracy. A expectation maximization (EM) algorithm acting on ordered subsets (OS-EM) of projection images is used to evaluate effects of different image formation models (2D, 2D/3D, fully 3D with and without scatter compensation) on accuracy and reconstruction time. Results have been obtained on (i) measurements of a cylinder containing regions with different activity levels, and on (ii) simulation of a 99m Tc brain study. It is shown that the simpler the image formation model used, the faster but less accurate the reconstruction is.

An important aspect of the present evaluation study is the effect of 3D post-reconstruction filtering. Every iterative reconstruction method requires regularization, whose optimal parameters depend on (i) the true activity distribution imaged, (ii) the imager characteristics, (iii) acquisition and reconstruction algorithm parameters, and (iv) the task which has to be performed on the image, for example by an observer or a quantitation program. A supervised method to estimate the widths (in transaxial plane and perpendicular to that plane) of a 3D Gaussian filter kernel was developed. We show that the squared error (SE) for several probacks is reduced by optimal (i.e, minimum SE) filtering, and that, for the scatter compensating probacks, the optimum is stabilized at high iteration numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Zeng, G. Gulberg, B. Tsui, and J. Terry, “Three-dimensional iterative reconstruction algorithms with attenuation and geometric point response correction,” IEEE Trans. Nucl. Sci., vol. 38, pp. 693–703, 1991.

    Article  Google Scholar 

  2. T. Hebert and S. Gopal, “The GEM MAP algorithm with 3-D SPECT system response,” IEEE Trans.Med.Im., vol. 11, pp. 81–90, 1992.

    Google Scholar 

  3. B. Tsui, E. Frey, X. Zhao, D. Lalush, R. Johnston, and W. McCartney, “The importance and implementation of accurate 3D compensation methods for quantitative SPECT,” Phys.Med.Biol., vol. 39, pp. 509–530, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. D. Gilland, R. Jaszczak, H. Wang, T. Turkington, K. Greer, and R. Coleman, “A 3D model of nonuniform attenuation and detector response compensation for efficient reconstruction in SPECT,” Phys. Med. Biol., vol. 39, pp. 547–561, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. F. Beekman, C. Kamphuis, P. van Rijk, and M. Viergever, “Quantitative evaluation of fully 3D iterative non-stationary scatter compensation in SPECT,” Information Processing in Medical Imaging, eds. Y. Bizais, C. Barillot, R. DiPaola, Kluwer Acad. Publ., Dordrecht., vol. 14, pp. 53–64, 1995.

    Google Scholar 

  6. C. Floyd, R. Jaszczak, K. Greer, and R. Coleman, “Inverse Monte Carlo as an unified reconstruction algorithm for ECT,” J.Nucl.Med., vol. 27, pp. 1577–1585, 1986.

    PubMed  Google Scholar 

  7. J. Bowsher and C. Floyd, “Treatment of Compton scattering in maximum likelihood, expectation maximization reconstructions of SPECT images,” J.Nucl.Med., vol. 32, pp. 1285–1291, 1991.

    PubMed  CAS  Google Scholar 

  8. E. Frey and B. Tsui, “A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT,” IEEE Trans. Nucl.Sci., vol. 40, pp. 1107–1116, 1993.

    Article  CAS  Google Scholar 

  9. F. Beekman, E. Eijkman, M. Viergever, G. Borm, and E. Slijpen, “Object shape dependent PSF model for SPECT imaging,” IEEE Trans.Nucl.Sci., vol. 40, pp. 31–39, 1993.

    Article  CAS  Google Scholar 

  10. T. Riauka and Z. Gortel, “Photon propagation and detection in Single Photon Emission Computed Tomography — an analytical approach,” Med.Phys., vol. 21, pp. 1311–1321, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. G. Zeng and G. Gullberg, “Frequency domain implementation of three-dimensional geometric point response in SPECT imaging,” Conference Record of 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, IEEE Press, Piscataway NY, pp. 1943–1947, 1992.

    Google Scholar 

  12. F. Beekman and M. Viergever, “Fast SPECT simulation including object shape dependent scatter,” IEEE Trans.Med.Im., vol. 14, pp. 271–282, 1995.

    Article  CAS  Google Scholar 

  13. F. Beekman, Fully 3D SPECT Reconstruction with Object Shape Dependent Scatter Compensation. PhD thesis, Utrecht University, 1995.

    Google Scholar 

  14. H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Trans.Med.Im., vol. 13, pp. 601–609, 1994.

    Article  CAS  Google Scholar 

  15. L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans.Med.Im., vol. 1, pp. 113–122, 1982.

    Article  CAS  Google Scholar 

  16. K. Lange and R. Carson, “E.M. reconstruction algorithms for emission and transmission tomography,” J. Comput.Assist. Tomog., vol. 8, pp. 306–316, 1984.

    CAS  Google Scholar 

  17. J. Li, R. Jaszczak, K. Greer, and R. Coleman, “Implementation of an accelerated iterative algorithm for cone beam SPECT,” Phys. Med. Biol., vol. 39, pp. 643–653, 1994.

    Article  PubMed  CAS  Google Scholar 

  18. C. Kamphuis, F. Beekman, P. van Rijk, and M. Viergever, “Comparison of maximum likelihood and ordered subset algorithms for 1D, 2D and fully 3D iterative SPECT reconstruction (abstract),” Eur. J. Nucl. Med, p. 810, 1995.

    Google Scholar 

  19. C. Kamphuis, F. Beekman, and M. Viergever, “Accelerated SPECT reconstruction using OS-EM with only two projections per subset.,” Proceedings of the 1995 IEEE Medical Imaging Conference, San Fransisco , in press, 1995.

    Google Scholar 

  20. D. Gilland, B. Tsui, H. Hu, and J. Perry, Computer simulated cardiac SPECT data for use in evaluating reconstruction algorithms. In: Medical Images: Formation, Handling and Evaluation. A.E. Todd-Pokropek and M.A. Viergever eds., NATO ASI Series F98, Springer-Verlag, Berlin, pp. 523–536, 1992.

    Chapter  Google Scholar 

  21. E. Frey and B. Tsui, “Modeling the scatter response function in inhomogeneous scattering media for SPECT,” IEEE Trans.Nucl.Sci., vol. 41, pp. 1585–1593, 1994.

    Article  Google Scholar 

  22. F. Beekman, E. Frey, C. Kamphuis, B. Tsui, and M. Viergever, “A new phantom for fast determination of the scatter response of a gamma camera,” IEEE Trans. Nucl. Sci., vol. 41, pp. 1481–1488, 1994.

    Article  CAS  Google Scholar 

  23. E. Hoffman, P. Cutler, W. Digby, and J. Maziotta, “3D-phantom to simulate cerebral bloodflow and metabolic images for PET,” IEEE Trans.Nucl.Sci., vol. 37, pp. 616–620, 1990.

    Article  Google Scholar 

  24. H. Barrett, “Objective assessment of image quality: Effects of noise and object variability,” J. Opt. Soc. Am., vol. 7, pp. 1266–1278, 1990.

    Article  CAS  Google Scholar 

  25. S. Lee, G. R. Gindi, I. Zubal, and A. Rangarajan, “Using ground truth data to design priors in bayesian SPECT reconstruction,” Information Processing in Medical Imaging, eds. Y. Bizais, C. Barillot, R. DiPaola, Kluwer Acad. Publ., Dordrecht., vol. 14, pp. 27–38, 1995.

    Google Scholar 

  26. H. Barrett, T. Gooley, K. Girodias, J. Rolland, T. White, and J. Yao, “Linear discriminants and image quality,” Image and Vision Computing, vol. 10, pp. 451–460, 1990.

    Article  Google Scholar 

  27. H. Barrett, J. Yao, J. Rolland, and K. Myers, “Model observers for assessment of image quality,” Proc. Natl. Acad. Sci. USA, vol. 90, pp. 9758–9765, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. D. Snyder, M. Miller, L. Thomas, and D. Politte, “Noise and edge artifacts in maximum likelihood reconstruction for emission tomography,” IEEE Trans.Med.Im., vol. 6, pp. 228–238, 1987.

    Article  CAS  Google Scholar 

  29. J. Wallis and T. Miller, “Fast converging iterative reconstruction algorithms in Single Photon Emission Computed Tomography,” J. Nucl. Med., vol. 34, pp. 1793–1800, 1993.

    PubMed  CAS  Google Scholar 

  30. W. Press, B. Flannerly, S. Teukolsky, and W. Vetterling, Numerical Recipes in C. Cambridge University Press, 1988.

    Google Scholar 

  31. R. Jaszczak, K. Greer, and C. Floyd, “Improved SPECT quantification using compensation for scattered photons,” J. Nucl. Med., vol. 25, pp. 893–900, 1984.

    PubMed  CAS  Google Scholar 

  32. F. Beekman, Single Photon Emission Computed Tomography Reconstructie met Neurale Netwerken, MSc thesis (in dutch). Department of Medical Physics and Biophysics: University of Nijmegen„ 1991.

    Google Scholar 

  33. F. Beekman, Image Restoration Using Neural Networks. Patent application 91.01555, 92.00796, PCT/NL92/00154, WO 93/06560, 1991.

    Google Scholar 

  34. M. Munley, C. Floyd, J. Bowsher, and R. Coleman, “An Artificial Neural Network approach to quantitative single photon emission computed tomography reconstruction with collimator, attenuation and scatter compensation,” Med. Phys., vol. 12, pp. 1889–1899, 1994.

    Article  Google Scholar 

  35. G. Gerig, O. Kübler, R. Kikinis, and F. A. Jolesz, “Nonlinear anisotropic filtering of MRI data,” IEEE Transactions on Medical Imaging, vol. 11, no. 2, pp. 221–232, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. W. J. Niessen, B. M. ter Haar Romeny, and M. A. Viergever, “Numerical analysis of geometry-driven diffusion equations,” in Geometry-Driven Diffusion in Computer Vision (B. M. ter Haar Romeny, ed.), Computational Imaging and Vision, pp. 393–410, Kluwer Academic Publishers B.V., 1994.

    Chapter  Google Scholar 

  37. W. J. Niessen, B. M. ter Haar Romeny, L. M. J. Florack, and M. A. Viergever, “A general framework for geometry-driven evolution equations,” IJCV, 1996. In print.

    Google Scholar 

  38. D. Luo, M. King, and S. Glick, “Local geometry variable conductance filtering for post reconstruction filtering,” IEEE Trans. Nucl. Sci., vol. 41, pp. 2800–2806, 1994.

    Article  Google Scholar 

  39. S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian restoration of images,” IEEE Trans. PAMI, vol. 6, pp. 721–741, 1984.

    Article  CAS  Google Scholar 

  40. S. Geman and D. McClure, “Bayesian image analysis: An application to single photon emission tomoaraphy,” Proc. Amer. Statist. Assoc., pp. 12–18, 1985.

    Google Scholar 

  41. P. Green, “Bayesian reconstruction from emission tomography data using modified E.M.-algorithm,” IEEE Trans.Med.Im., vol. 9, pp. 84–93, 1990.

    Article  CAS  Google Scholar 

  42. T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors,” IEEE Trans.Med.Im., vol. 8, pp. 194–202, 1989.

    Article  CAS  Google Scholar 

  43. D. Lalush and B. Tsui, “Simulation evaluation of Gibbs prior distributions for use in maximum a posteriori SPECT reconstructions,” IEEE Trans.Med.Im., vol. 11, pp. 267–275, 1992.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beekman, F.J., Viergever, M.A. (1996). Evaluation of Fully 3D Iterative Scatter Compensation and Post-Reconstruction Filtering In SPECT. In: Grangeat, P., Amans, JL. (eds) Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Computational Imaging and Vision, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8749-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8749-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4723-6

  • Online ISBN: 978-94-015-8749-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics