Skip to main content

Constitutive Relations and Realizability of Single-Point Turbulence Closures

  • Chapter
Turbulence and Transition Modelling

Part of the book series: Series ((ERCO,volume 2))

Abstract

In turbulent computational fluid dynamics (CFD), the basic equations are the ensemble averaged Navier-Stokes equations, such as the mean velocity and mean scalar (e.g., temperature) equations, the Reynolds stress and turbulent scalar flux equations, etc. These transport equations are, in general, not closed because of the new unknown correlation terms created by the non-linearity of the Navier-Stokes equation in the statistical averaging process. These new unknown terms are onepoint (in time and space) turbulent correlations, for example, the Reynolds stress EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG1bWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGQbaa % beaaaaaaaa!3A36!EquationSource$$ \[\overline {{u_i}{u_j}} \]$$ and the scalar flux EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca %WG1bWaaSbaaSqaaiaadMgaaeqaaOGaeqiUdehaaaaa!39D7!EquationSource$$ \[\overline {theta\{u_i} } \]$$ in the mean velocity U i and mean scalar Θ equations, or the pressure-strain correlation EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG1bWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGQbaa % beaaaaaaaa!3A36!EquationSource$$ \[\overline {{p}({u_i,j} + {u_j,i})} \]$$ and the pressure-scalar gradient correlation EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca %WG1bWaaSbaaSqaaiaadMgaaeqaaOGaeqiUdehaaaaa!39D7!EquationSource$$ \[\overline {p\{theta_,i} } \]$$ in the Reynolds stress and scalar flux transport equations. These terms and other unknown correlation terms (e.g., the triple correlations EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG1bWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGQbaa % beaaaaaaaa!3A36!EquationSource$$ \[\overline {{u_i}{u_j}{u_k}} \]$$, EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG1bWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGQbaa % beaaaaaaaa!3A36!EquationSource$$ \[\overline {{u_i}{u_j}{theta}} \]$$ and EquationSource% MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca % WG1bWaaSbaaSqaaiaadMgaaeqaaOGaamyDamaaBaaaleaacaWGQbaa % beaaaaaaaa!3A36!EquationSource$$ \[\overline {{u_i}{theta^2}} \]$$) must be modeled in order to close the corresponding CFD equations and make them ready to be used for studying various turbulent flows. The task of one-point closures is to provide models or “constitutive” relationships for these new unknown one-point turbulent correlation terms. In this chapter we shall follow the ideas and approach of Lumley (1970) in deriving the possible general constitutive relationships for various one-point turbulent correlations. Then, we shall discuss the realizability concept introduced by Schumann (1977) Lumley (1978) and Reynolds (1987) and show its application in various levels of one-point turbulence closures for both velocity and scalar fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Daly, B. J. & Harlow, F. H. 1970. Transport equations of turbulence. Phys. Fluids 13, 2634.

    Article  ADS  Google Scholar 

  • Fu, S., Launder, B. E. & Tselepidakis, D. P. 1987. Accommodating the effects of high strain rates in modelling the pressure-strain correlations. Umist Mech. Engng Dept. Rep.

    Google Scholar 

  • Hallbäck, M. 1993. Development of Reynolds stress closures of homogeneous turbulence through physical and numerical experiments. PhD Thesis, Royal Institute of Technology, Stockholm.

    Google Scholar 

  • Johansson, A. V. & Hallbäck, M. 1994. Modelling of rapid pressure-strain in Reynoldsstress closures. J. Fluid Mech. 269, 143–168.

    Article  ADS  MATH  Google Scholar 

  • Launder, B. E., Reece, G. L. & Rodi, W. 1975. Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566.

    Article  ADS  MATH  Google Scholar 

  • Lumley, J. L. 1970. Toward a turbulent constitutive equation. J. Fluid Mech. 41, 413–434.

    Article  ADS  Google Scholar 

  • Lumley, J. L. 1978. Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 124–176.

    Google Scholar 

  • Lumley, J. L. 1983. Turbulence modeling. Asme J. Appl. Mech. 50, 1097–1103.

    Article  ADS  Google Scholar 

  • Mansour, N. N., Shih, T.-H. & Reynolds, W. C. 1991. The effect of rotation on initially anisotropic homogeneous flows. Phys. Fluids A 3, 2421–2425.

    Article  ADS  MATH  Google Scholar 

  • Pope, S. B. 1985. Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192.

    Article  MathSciNet  ADS  Google Scholar 

  • Reynolds, W. C. 1987. Fundamentals of turbulence for turbulence modeling and simulation. Lecture Notes for Von Karman Institute, Agard-Cp-93, Nato.

    Google Scholar 

  • Reynolds, W. C. 1989. Effects of rotation on homogeneous turbulence. In Proc. 10th Australasian Fluid Mechanics Sonf., Melbourne, December 1989, Paper Ks-2.

    Google Scholar 

  • Ristorcelli, Jr. J. R. 1987. A realizable rapid pressure model satisfying two dimensional frame indifference and valid for three dimensional three component turbulence. Tech. Rep. Fda-87–19. Cornell University.

    Google Scholar 

  • Rivlin, R. S. 1955. Further remarks on the stress deformation relations for isotropic materials. J. Arch. Ratl. Mech. Anal. 4, 681–702.

    MathSciNet  MATH  Google Scholar 

  • Rotta, J. C. 1951. Statistische theorie nichthomogener turbulenz I. Z. Physik. 129, 547–572.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Rubinstein, R. & Barton, J. M. 1990. Nonlinear Reynolds stress models and the renormalization group. Phys. Fluids A 2, 1472–1476.

    Article  ADS  MATH  Google Scholar 

  • Rubinstein, R. & Barton, J. M. 1991. Renormalization group analysis of anisotropic diffusion in turbulent shear flows. Phys. Fluids A 3, 415–421.

    Article  ADS  MATH  Google Scholar 

  • Schumann, U. 1977. Realizability of Reynolds stress turbulence models. Phys. Fluid 20, 721–725.

    Article  ADS  MATH  Google Scholar 

  • Shih, T.-H., Zhu, J. & Lumley, J. L. 1995. A new Reynolds stress algebraic equation model. Comput. Methods Appl. Mech. Engrg. 125, 287–302.

    Article  ADS  Google Scholar 

  • Shih, T.-H. & Lumley, J. L. 1995. Applications of Direct Numerical Simulation of Turbulence in Second Order Closures. Nasa Cr 198386

    Google Scholar 

  • Shih, T.-H., Shabbir, A. & Lumley, J. L. 1994. Realizability in second moment turbulence closures revisited. Nasa Tm 10646

    Google Scholar 

  • Shih, T.-H. & Lumley, J. L. 1993. Remarks on turbulent constitutive relations. Math. Comput. Modelling 18, 9–6.

    Article  MathSciNet  MATH  Google Scholar 

  • Shih, T.-H., Shabbir, A. & Lumley, J. L. 1991. Advances in modeling the pressure correlation terms in the second moment equations. Nasa Tm 104413

    Google Scholar 

  • Shih, T.-H. & Lumley, J. L. 1986. Influence of time scale ratio on scalar flux relaxation: modeling Sirivat and Warhaft’s homogeneous passive scalar fluctuations. J. Fluid Mech. 162, 211–222. Also Tech. Rep. Fda-81–06. Cornell University.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shih, T.-H. & Lumley, J. L. 1986. Second order modeling of particle dispersion in a turbulent flow. J. Fluid Mech. 163, 349–363. Also Tech. Rep. Fda-84–12, 1984 Cornell University.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shih, T.-H. & Lumley, J. L. 1985. Modeling of pressure correlation terms in Reynolds stress and scalar flux equations. Tech. Rep. Fda-85–03. Cornell University.

    Google Scholar 

  • Speziale, C. G., Sarkar, S. & Gatski, T. B. 1991. Modeling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272.

    Article  ADS  MATH  Google Scholar 

  • Tavoularis, S. & Corrsin, A. 1981. Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient. J. Fluid Mech. 104, 311–347.

    Article  ADS  Google Scholar 

  • Yoshizawa, A. 1984. Statistical analysis of the derivation of the Reynolds stress from its eddy-viscosity representation. Phys. Fluids 27, 1377–1387.

    Article  ADS  MATH  Google Scholar 

  • Yoshizawa, A. 1989. Statistical modeling of passive-scalar diffusion in turbulent shear flows. J. Fluid Mech. 282, 163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shih, TH. (1996). Constitutive Relations and Realizability of Single-Point Turbulence Closures. In: Hallbäck, M., Henningson, D.S., Johansson, A.V., Alfredsson, P.H. (eds) Turbulence and Transition Modelling. ERCOFTAC Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8666-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8666-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4707-6

  • Online ISBN: 978-94-015-8666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics