Skip to main content

Evolved consequences of rarity

  • Chapter
The Biology of Rarity

Part of the book series: Population and Community Biology Series ((PCBS,volume 17))

Abstract

Rarity is common and widespread. As early as 1859 Charles Darwin wrote that ‘rarity is the attribute of a vast number of species in all classes, in all countries’. All species are rare somewhere, and most species are rare toward the periphery of their ranges (Hanski, 1982; Brown, 1984; Hanski et al., 1993). The majority of species comprising local biotas are rare (Preston, 1948; Hubbell, 1979). Indeed, the rarity of most species gave rise to a major school of ecological thought, which asserted that populations were typically regulated by density-independent factors acting at low population densities rather than by density-dependent factors, such as competition, whose effects should be most strongly felt at high population densities (Andrewartha and Birch, 1954).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, W.R. (1973) A morphological hypothesis for the origin of heterostyly in the Rubiaceae. Taxon, 42, 537–542.

    Article  Google Scholar 

  • Andrewartha, H.G. and Birch, L.C. (1954) The Distribution and Abundance of Animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Ashman, T.-L. and Schoen, D.J. (1994) How long should flowers live? Nature (London), 371, 788–791.

    Article  CAS  Google Scholar 

  • Baker, H.G. (1958) Studies in the reproductive biology of West African Rubiaceae. Journal of the West African Science Association, 4, 9–24.

    Google Scholar 

  • Bannister, M.H. (1965) Variation in the breeding system of Pinus radiata, in The Genetics of Colonizing Species, (eds H.G. Baker and G.L. Stebbins), Academic Press, New York, pp. 353–374.

    Google Scholar 

  • Barrett, S.C.H. (1989) Mating system evolution and speciation in heterostylous plants, in Speciation and Its Consequences (eds D. Otte and J.A. Endler), Sinauer Associates, Sunderland, MA, pp. 257–283.

    Google Scholar 

  • Barrett, S.C.H. and Richards, J.H. (1990) Heterostyly in tropical plants. Memoirs of the New York Botanical Garden, 55, 35–61.

    Google Scholar 

  • Bawa, K.S. and Beach, J.S. (1983) Self-incompatibility systems in the Rubiaceae of a tropical lowland wet forest. American Journal of Botany, 70, 1281–1288.

    Article  Google Scholar 

  • Bazzaz, F.A., Chiariello, N.R., Coley, P.D. and Pitelka, L.F. (1987) Allocating resources to reproduction and defense. BioScience, 37, 58–67.

    Article  Google Scholar 

  • Beach, J.H. and Bawa, K.S. (1980) Role of pollinators in the evolution of dioecy from distyly. Evolution, 34, 1138–1142.

    Article  Google Scholar 

  • Berenbaum, M. (1981a) Effects of linear furanocoumarins on an adapted specialist insect (Papilio polyxenes). Ecological Entomology, 6, 345–351.

    Article  Google Scholar 

  • Berenbaum, M. (1981b) Patterns of furanocoumarin distribution and insect herbivory in the Umbelliferae: plant chemistry and community structure. Ecology, 62, 1254–1266.

    Article  CAS  Google Scholar 

  • Brown, J.H. (1984) On the relationship between abundance and distribution of species. American Naturalist, 124, 255–279.

    Article  Google Scholar 

  • Burgess, K.H. (1991) Florivory: The ecology of flower feeding insects and their host plants. PhD Thesis, Harvard University.

    Google Scholar 

  • Cartar, R. and Dill, L. (1990) Why are bumblebees risk-sensitive foragers? Behavioral Ecology and Sociobiology, 26, 121–127.

    Article  Google Scholar 

  • Cates, R.G. and Orians, G.H. (1975) Successional status and the palatability of plants to generalist herbivores. Ecology, 56, 410–418.

    Article  Google Scholar 

  • Chew, F.S. (1975) Coevolution of pierid butterflies and their cruciferous food plants. I. The relative quality of available resources. Oecologia, 20, 117–127.

    Article  Google Scholar 

  • Coley, P.D., Bryant, J.P. and Chapin, F.S. III (1985) Resource availability and plant antiherbivore defense. Science, 230, 895–899.

    Article  PubMed  CAS  Google Scholar 

  • Croat, T.B. (1978) Flora of Barro Colorado Island, Stanford University Press, Stanford.

    Google Scholar 

  • Darwin, C. (1859) On the Origin of Species, Murray, London.

    Google Scholar 

  • Dajoz, I., Till-Bottraud, I. and Gouyon, P.-H. (1991) Evolution of pollen morphology. Science, 253, 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Dodson, C.H. (1962) The importance of pollination in the evolution of the orchids of tropical America. American Orchid Society Bulletin, 31, 525–534.

    Google Scholar 

  • Dodson, C.H. (1962) The importance of pollination in the evolution of the orchids of tropical America. American Orchid Society Bulletin, 31, 641–649.

    Google Scholar 

  • Dodson, C.H. (1962) The importance of pollination in the evolution of the orchids of tropical America. American Orchid Society Bulletin, 31, 731–735.

    Google Scholar 

  • Donoghue, M. J. and Doyle, J. A. (1989) Phylogenctic analysis of angiosperms and the relationships of Hamamelidae, in Evolution, Systematics, and Fossil History of the Hamamelidae, Vol. 1 (eds P.R. Crane and S. Blackmore), Clarendon Press, Oxford, pp. 17–45.

    Google Scholar 

  • Erdtman, G. (1966) Pollen Morphology and Plant Taxonomy, Hafner, New York.

    Google Scholar 

  • Feeny, P. (1976) Plant apparency and chemical defense. Recent Advances in Phytochemistry, 10, 1–40.

    CAS  Google Scholar 

  • Feinsinger, P., Murray, K.G., Kinsman, S. and Busby, W.H. (1986) Floral neighborhood and pollination success in four hummingbird-pollinated cloud forest plant species. Ecology, 67, 449–464.

    Article  Google Scholar 

  • Fiedler, P.L. (1987) Life history and population dynamics of rare and common mariposa lilies (Calochortus Pursh: Liliaceae). Journal of Ecology, 75, 977–995.

    Article  Google Scholar 

  • Futuyma, D.J. (1976) Food plant specialization and environmental predictability in Lepidoptera. American Naturalist, 110, 285–292.

    Article  Google Scholar 

  • Gass, C.L. and Roberts, W.M. (1992) The problem of temporal scale in optimization: three contrasting views of hummingbird visits to flowers. American Naturalist, 140, 829–853.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, C.W. (1989a) A revision of Mesoamerican Psychotria subgenus Psychotria (Rubiaceae), part 1: Introduction and species 1–16. Annals of the Missouri Botanical Garden, 76, 67–111.

    Article  Google Scholar 

  • Hamilton, C.W. (1989b) A revision of Mesoamerican Psychotria subgenus Psychotria (Rubiaceae), part 2: Species 17–47. Annals of the Missouri Botanical Garden, 76, 386–429.

    Article  Google Scholar 

  • Hamilton, C.W. (1989c) A revision of Mesoamerican Psychotria subgenus Psychotria (Rubiaceae), part 3: Species 48–61 and appendices. Annals of the Missouri Botanical Garden, 76, 886–916.

    Article  Google Scholar 

  • Hamilton, C.W. (1990) Variations on a distylous theme in Mesoamerican Psychotria subgenus Psychotria (Rubiaceae). Memoirs of the New York Botanical Garden, 55, 62–75.

    Google Scholar 

  • Hanski, I. (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos, 38, 210–221.

    Article  Google Scholar 

  • Hanski, I., Kouki, J. and Halkka, A. (1993) Three explanations of the positive relationship between distribution and abundance of species, in Species Diversity in Ecological Communities (eds R.E. Ricklefs and D. Schluter), University of Chicago Press, Chicago, pp. 108–116.

    Google Scholar 

  • Harper, K.T. (1979) Some reproductive and life history characteristics of rare plants and implications for management. Great Basin Naturalist Memoirs, 3, 129–137.

    Google Scholar 

  • Hoekstra, F.A. (1983) Physiological evolution in angiosperm pollen: possible role of pollen vigor, in Pollen: Biology and Implications for Plant Breeding (eds D.L. Mulcahy and E. Ottaviano), Elsevier Biomedical, New York, NY, pp. 35–41.

    Google Scholar 

  • Hubbell, S.P. (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  • Jennersten, O. (1988) Pollination in Dianthus deltoides (Caryophyllaceae): effects of habitat fragmentation on visitation and seed-set. Conservation Biology, 2, 359–366.

    Article  Google Scholar 

  • Karron, J.D. (1987) A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evolutionary Ecology, 1, 47–58.

    Article  Google Scholar 

  • Kunin, W.E. (1991) Few and far between: plant population density and its effects on insect–plant interactions. PhD Thesis, University of Washington, Seattle.

    Google Scholar 

  • Landa, K. and Rabinowitz, D. (1983) Relative preferences of Arphia sulphurea (Orthoptera: Acrididae) for sparse and common prairie grasses. Ecology, 64, 392–395.

    Article  Google Scholar 

  • Levin, D.A. (1995) Plant outliers: an ecological perspective. American Naturalist, 145, 109–118.

    Article  Google Scholar 

  • Macior, L.W. (1978.) The pollination ecology and endemic adaptation of Pedicularis furbishiae S. Wats. Bulletin of the Torrey Botanical Club, 105, 268–277.

    Article  Google Scholar 

  • Martin, F.W. (1967) Distyly, self-incompatibility, and evolution in Melochia. Evolution, 21, 493–499.

    Article  Google Scholar 

  • McNeill, J. and Crompton, C.W. (1978) Pollen dimorphism in Silene alba (Caryophyllaceae). Canadian Journal of Botany, 56, 1280–1286.

    Article  Google Scholar 

  • Mehrhoff, L.A. III (1983) Pollination in the genus Isotria (Orchidaccac). American Journal of Botany, 70, 1444–1453.

    Article  Google Scholar 

  • Mulcahy, D.L. (1974) Correlation between speed of pollen tube growth and seedling height in Zea mays L. Nature (London), 249, 491–493.

    Article  Google Scholar 

  • Mulcahy, D.L. and Mulcahy, G.B. (1975) The influence of gametophytic competition on sporophytic quality in Dianthus chinensis. Theoretical and Applied Genetics, 46, 277–280.

    Google Scholar 

  • Murawski, D.A., Hamrick, J.L., Hubbell, S.P. and Foster, R.B. (1990) Mating systems of two bombacaceous trees of a Neotropical forest. Oecologia, 82, 501–506.

    Article  Google Scholar 

  • Nilsson, L.A. (1992) Orchid pollination biology. Trends in Ecology and Evolution, 7, 255–259.

    Article  Google Scholar 

  • Noss, R.E. and Cooperrider, A.Y. (1994) Saving Nature’s Legacy, Island Press, Covelo, CA.

    Google Scholar 

  • Oostermeijer, J.G., Den Nijs, J.C.M., Raijmann, L.W.E.L. and Menken, S.B.J. (1992) Population biology and management of the marsh gentian (Gentiana pneumonanthe L.), a rare species in the Netherlands. Botanical Journal of the Linnean Society, 108, 117–130.

    Article  Google Scholar 

  • Ornduff, R. (1966) The origins of dioecism from heterostyly in Nymphoides (Menyanthaceae). Evolution, 20, 309–314.

    Article  Google Scholar 

  • Preston, F.W. (1948) The commonness, and rarity, of species. Ecology, 29, 254–283.

    Article  Google Scholar 

  • Primack, R.B. (1985) Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15–37.

    Article  Google Scholar 

  • Rabinowitz, D. (1981) Seven forms of rarity, in The Biological Aspects of Rare Plant Conservation (ed. H. Synge), John Wiley and Sons, New York, pp. 205–217.

    Google Scholar 

  • Rabinowitz, D. and Rapp, J.K. (1981) Dispersal abilities of seven sparse and common grasses from a Missouri prairie. American Journal of Botany, 65, 616–624.

    Article  Google Scholar 

  • Rabinowitz, D, Rapp, J.F., and Dixon, P.M. (1984) Competitive abilities of sparse grass species: means of persistence as a cause of abundance. American Journal of Botany, 68, 1144–1154.

    Google Scholar 

  • Rabinowitz, D., Rapp, J.K., Cairns, S. and Mayer, M. (1989) The persistence of rare prairie grasses in Missouri: environmental variation buffered by reproductive output of sparse species. American Naturalist, 134, 525–544.

    Article  Google Scholar 

  • Real, L.A. (1981) Uncertainty and pollinator-plant interactions: the foraging behavior of bees and wasps on artificial flowers. Ecology, 62, 20–26.

    Article  Google Scholar 

  • Rhoadcs, D.F. and Cates, R.G. (1976) Toward a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry, 10, 168–213.

    Google Scholar 

  • Richards, A.J. (1986) Plant Breeding Systems, Allen and Unwin, London.

    Google Scholar 

  • Ricklefs, R.E. and Cox, G.W. (1972) Taxon cycles in the West Indian avifauna. American Naturalist, 106, 195–219.

    Article  Google Scholar 

  • Sih, A. and Baltus, M.-S. (1987) Patch size, pollinator behavior, and pollination limitation in catnip. Ecology, 68. 1679–1690.

    Article  Google Scholar 

  • Smyth, C.A. and Hamrick, J.L. (1984) Variation in estimates of outcrossing in musk thistle populations. Journal of Heredity, 75, 303–307.

    Google Scholar 

  • Snow, A.A. and Spira, T.P. (1991) Pollen vigor and the potential for sexual selection in plants. Nature (London), 352, 766–797.

    Article  Google Scholar 

  • Squillace, A.E. and Krause, J.R. (1963) The degree of natural selfing in slash pine as estimated from albino frequencies. Silvae Genetica, 12, 46–50.

    Google Scholar 

  • Terborgh, J. and Winter, B. (1980) Some causes of extinction, in Conservation Biology: an evolutionary-ecological perspective (eds M.E. Soulé and B.A. Wilcox), Sinauer Associates, Sunderland, MA, pp. 119–133.

    Google Scholar 

  • Thornhill, R. and Alcock, J. (1983) The Evolution of insect Mating Systems, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Wheelwright, N.T. and Orians, G.H. (1982) Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. American Naturalist, 119, 402–413.

    Article  Google Scholar 

  • Wilson, E.O. (1961) The nature of the taxon cycle in the Melanesian ant fauna. American Naturalist, 95, 1659–193.

    Google Scholar 

  • Wolf, L.L. and Hainsworth, F.R. (1983) Economics of foraging strategies in sunbirds and hummingbirds, in Behavioral Energetics: The Cost of Survival in Vertebrates (eds E.P. Aspey and S.I. Lustic), Ohio State University Press, Columbus, OH, pp. 223–264.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Orians, G.H. (1997). Evolved consequences of rarity. In: Kunin, W.E., Gaston, K.J. (eds) The Biology of Rarity. Population and Community Biology Series, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5874-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5874-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6483-5

  • Online ISBN: 978-94-011-5874-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics