Skip to main content

Abstract

Let (X i, A i, P i), i = 1, 2 be two probability spaces. A probability µ on (X 1 × X 2, A 1A 2) is said to have marginals P 1 and P 2 if

$$P(A_1 \times X_2) = P_1 (A_1) \textup{for all} A_1 \in \mathcal {A}_1 \\ \textup{and} \\ P(X_1 \times A_2) = P_2 (A_2) \textup{for all} A_2 \in \mathcal {A}_2 \\$$

Let \(\mathcal{M} = \left\{\mu \ \textup{on} \ \mathcal{A}_1 \otimes \mathcal{A}_2: \mu\ \textup<Emphasis Type="ItalicSmallcaps"> a probability with marginals</Emphasis> \ P_1 \ \textup{and} \ P_2 \right\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dunford, N. AND Schwartz, J.T.: Linear Operators. Interscience, New York, 1958.

    MATH  Google Scholar 

  2. Gaffke, N. AND Rüschendorf, L.: On a class of extremal problems in Statistics. Math. Operationsforschumg Stat., Ser. Optimization 12, 123–135 (1981).

    Article  MATH  Google Scholar 

  3. Gretsky, N.E., Ostroy, J.M., and Zame, W.R.: The nonatomic assignment model. Econ. Theory., 2, 103–127 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  4. Kellerer, H.G.: Maßtheoretische Marginal problème. Math. Ann. 153, 168–198 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  5. Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb. 67, 399–432 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  6. Kellerer, H.G.: Measure-theoretic versions of Linear Programming. Math. Zeit. 198, 367–400 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  7. Monge, G.: Mémoire sur la théorie des déblais ét ramblais. Mem. Math. Phys. Acad. Roy. Sci. Paris, 666–704 (1781).

    Google Scholar 

  8. Neveu, J.: Mathematical foundations of the calculus of probability. Holden Day, London, 1965.

    MATH  Google Scholar 

  9. Ramachandran, D.: Perfect Measures I and II. ISI — Macmillan Lecture Notes Series, 5,7, Macmillan, New Delhi, 1979.

    Google Scholar 

  10. Ramachandran, D. AND Rüschendorf, L.: A General Duality Theorem for Marginal Problems. Prob. Theory and Related Fields, 101, 311–319 (1995).

    Article  MATH  Google Scholar 

  11. R&#x00fc;schendorf, L.: Sharpness of Fréchet-Bounds. Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 293–302 (1981).

    Article  MATH  Google Scholar 

  12. Shapley, L.S. AND Shubik, M.: The assignment game, i:the core. Int. J. Game Theory 1, 111–130 (1972).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ramachandran, D., Rüschendorf, L. (1997). Duality Theorems for Assignments with upper Bounds. In: Beneš, V., Štěpán, J. (eds) Distributions with given Marginals and Moment Problems. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5532-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5532-8_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6329-6

  • Online ISBN: 978-94-011-5532-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics