Skip to main content

Degenerate Equality Constrained Optimization Problems and P-Regularity Theory

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2022)

Abstract

We consider necessary optimality conditions for optimization problems with equality constraints given in the operator form as \(F(x)=0\), where F is an operator between Banach spaces. The paper addresses the case when the Lagrange multiplier \(\lambda _0\) associated with the objective function might be equal to zero. If the equality constraints are not regular at some point \(x^*\) in the sense that the Fréchet derivative of F at \(x^*\) is not onto, then the point \(z^*=(x^*, \lambda ^*_0, \lambda ^*)\) is a degenerate solution of the classical Lagrange system of optimality conditions \({\mathcal {L}}(x, \lambda _0, \lambda )=0\), where \(x^*\) is a solution of the optimization problem and \((\lambda ^*_0, \lambda ^*)\) is a corresponding generalized Lagrange multiplier. We derive new conditions that guarantee that \(z^*\) is a locally unique solution of the Lagrange system. We also introduce a modified Lagrange system and prove that \(z^*\) is its regular locally unique solution. The modified Lagrange system introduced in the paper can be used as a basis for constructing numerical methods for solving degenerate optimization problems. Our results are based on the construction of p–regularity and are illustrated by examples.

This work was supported in part by the Russian Foundation for Basic Research, project No. 21-71-30005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  2. Brezhneva, O.A., Tret’yakov, A.A.: Optimality conditions for degenerate extremum problems with equality constraints. SIAM J. Control. Optim. 42, 729–745 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezhneva, O., Tret’yakov, A.: The p-th order necessary optimality conditions for inequality—constrained optimization problems. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 903–911. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44839-X_95

    Chapter  Google Scholar 

  4. Brezhneva, O.A., Tret’yakov, A.A.: The pth order optimality conditions for inequality constrained optimization problems. Nonlinear Anal. 63, e1357–e1366 (2005)

    Article  MATH  Google Scholar 

  5. Brezhneva, O.A., Tret’yakov, A.A.: The \(p\)th order optimality conditions for nonregular optimization problems. Dokl. Math. 77, 163–165 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dmitruk, A.V.: Quadratic conditions for a Pontryagin minimum in an optimal control problem linear in the control. Theorems Weak. Equal. Constr. Math. USSR Izv. 31, 121–141 (1986)

    Google Scholar 

  7. Izmailov, A.F.: Optimality conditions for degenerate extremum problems with inequality-type constraints. Comput. Math. Math Phys. 34, 723–736 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Izmailov, A.F., Solodov, M.V.: Optimality conditions for irregular inequality-constrained problems. SIAM J. Control. Optim. 40, 1280–1295 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Izmailov, A.F., Solodov, M.V.: The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions. Math. Oper. Res. 27, 614–635 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Izmailov, A.F., Tret’yakov, A.A.: Factor-Analysis of Nonlinear Mappings. Nauka, Moscow (in Russian) (1994)

    Google Scholar 

  11. Ledzewicz, U., Schättler, H.: Second-order conditions for extremum problems with nonregular equality constraints. J. Optim. Theory Appl. 86, 113–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ledzewicz, U., Schättler, H.: A high-order generalization of the Lyusternik theorem. Nonlinear Anal. 34, 793–815 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ledzewicz, U., Schättler, H.: High-order approximations and generalized necessary conditions for optimality. SIAM J. Control. Optim. 37, 33–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Milyutin, A.A.: On quadratic conditions for an extremum in smooth problems with a finite-dimensional image. In: Lenin, V.L. (ed.) Methods of the Theory of Extremal Problems in Economics, Nauka, Moscow, pp. 138–177 (in Russian) (1981)

    Google Scholar 

  15. Tret’yakov, A.A.: Necessary conditions for optimality of \(p\)th order. In: Control and Optimization, MSU, Moscow, pp. 28–35 (in Russian) (1983)

    Google Scholar 

  16. Tret’yakov, A.A.: Necessary and sufficient conditions for optimality of \(p\)th order. USSR Comput. Math. Math. Phys. 24, 123–127 (1984)

    Article  MATH  Google Scholar 

  17. Tret’yakov, A.A.: The implicit function theorem in degenerate problems. Russ. Math. Surv. 42, 179–180 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tret’yakov, A.A., Marsden, J.E.: Factor-analysis of nonlinear mappings: \(p\)-regularity theory. Commun. Pure Appl. Anal. 2, 425–445 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezhneva, O.A., Tret’yakov, A.A.: The \(p\)-factor-Lagrange methods for degenerate nonlinear programming. Numer. Funct. Anal. Optim. 28, 1051–1086 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brezhneva, O.A., Tret’yakov, A.A.: P-factor-approach to degenerate optimization problems. In: Ceragioli, F., Dontchev, A., Futura, H., Marti, K., Pandolfi, L. (eds.) CSMO 2005. IFIP, vol. 199, pp. 83–90. Springer, Boston, MA (2006). https://doi.org/10.1007/0-387-33006-2_8

    Chapter  MATH  Google Scholar 

  21. Rudin, W.: Functional Analysis. McGraw-Hill, Boston (1991)

    MATH  Google Scholar 

  22. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Consultants Bureau, New York and London (1987)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlasta Malkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brezhneva, O., Evtushenko, Y., Malkova, V., Tret’yakov, A. (2022). Degenerate Equality Constrained Optimization Problems and P-Regularity Theory. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Optimization and Applications. OPTIMA 2022. Lecture Notes in Computer Science, vol 13781. Springer, Cham. https://doi.org/10.1007/978-3-031-22543-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22543-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22542-0

  • Online ISBN: 978-3-031-22543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics