Skip to main content

The Geometry of Quantum Probabilities

  • Chapter
On Quanta, Mind and Matter

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 102))

Abstract

The EPR paradox of Einstein, Podolsky, and Rosen (1935) was presented as an argument for the need for additional variables in quantum theory to restore causality and locality to that theory. Such a proposition goes to the heart of the controversies about the proper interpretation of quantum mechanics, crystallized nicely in the long debate between Niels Bohr and Albert Einstein, see Bohr (1949). Bell (1964) demonstrated the limitations on locality that any such hidden variable theory might have. Wigner (1970) simplified and made more specific the argument of Bell for a quantum mechanical system of two spin-1/2 particles. In the intervening years a huge literature concerning the conceptual difficulties with quantum mechanics has accumulated and we have no intention nor do we make any pretense of dealing with it here. See the collection of articles by Bell (1987) and, for example, the recent exposition of Bohm (1996), or the very recent articles by Goldstein (1998) for just some of the viewpoints held and flavors preferred within the physics community as concerns the proper physical interpretations of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accaxdi L. (1988): Foundations of quantum mechanics: a quantum probabilistic approach. In The Nature of Quantum Paradoxes, ed. by G. Tarozzi and A. van der Merwe (Kluwer, Dordrecht), pp. 257–323.

    Chapter  Google Scholar 

  • Accardi L. (1995): Can mathematics help solving the interpretational problems of quantum theory? Nuovo Cim. 110B, 685–721.

    Article  MathSciNet  ADS  Google Scholar 

  • Accardi L. and Fedullo A. (1982): On the statistical meaning of complex numbers in quantum mechanics. Lett. Nuovo Cim. 34, 161–172.

    Article  MathSciNet  Google Scholar 

  • Bell J. (1964): On the Einstein Podolsky Rosen paradox. Physics 1, 195–200.

    Google Scholar 

  • Bell J. (1987): Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge).

    MATH  Google Scholar 

  • Bohm D. (1996): On the role of hidden variables in the fundamental structure of physics. Found. Phys. 26, 719–786.

    Article  MathSciNet  ADS  Google Scholar 

  • Bohr N. (1949): Discussion with Einstein on epistemological problems in atomic physics. In Albert Einstein: Philosopher-Scientist, ed. by P. Schilpp (Open Court, Evanston), pp. 200–241.

    Google Scholar 

  • Einstein A., Podolsky B., and Rosen, N. (1935): Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780.

    Article  ADS  MATH  Google Scholar 

  • Glansdorff P. and Prigogine I. (1971): Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York).

    MATH  Google Scholar 

  • Goldstein S. (1998): Quantum theory without observers — Parts I, II. Physics Today 51, no. 3, 42–46, no. 4, 38–42.

    Article  Google Scholar 

  • Gustafson K. (1968a): The angle of an operator and positive operator products. Bull. Amer. Math. Soc. 74, 488–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson K. (1968b): Positive (noncommuting) operator products and semigroups. Math. Zeit. 105, 160–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson K. (1968c): A note on left multiplication of semigroup generators. Pac. J. Math. 23, 463–465.

    MathSciNet  Google Scholar 

  • Gustafson K. (1972): Anti-eigenvalue inequalities in operator theory. In Inequalities III, ed. by O. Shisha (Academic Press, New York), pp. 115–119.

    Google Scholar 

  • Gustafson K. (1994a): Operator trigonometry. Lin. Multilin. Alg. 37, 139–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson K. (1994b): Antieigenvalues. Lin. Alg. & Applic. 208/209, 437–454.

    Article  MathSciNet  Google Scholar 

  • Gustafson K. (1995): Matrix trigonometry. Lin. Alg. & Applic. 217, 117–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson K. (1996): Commentary on Topics in the Analytic Theory of Matrices, Section 23: Singular angles of a square matrix. In Collected Works of Helmut Wielandt, Vol. 2, ed. by B. Huppert and H. Schneider (deGruyter, Berlin), pp. 356–367.

    Google Scholar 

  • Gustafson K. (1997a): Lectures on Computational Fluid Dynamics, Mathematical Physics, and Linear Algebra (World Scientific, Singapore).

    Book  MATH  Google Scholar 

  • Gustafson K. (1997b): Operator trigonometry of iterative methods. Num. Lin. Alg. Applic. 4, 333–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson K. (1998a): Domain decomposition, operator trigonometry, Robin condition. Contemporary Mathematics 218, 455–460.

    Article  MathSciNet  Google Scholar 

  • Gustafson K. (1998b): Operator trigonometry of wavelet frames. In Iterative Methods in Scientific Computation, ed. by J. Wang, M. Allen, B. Chen, and T. Mathew (IMACS, New Brunswick), pp. 161–166.

    Google Scholar 

  • Gustafson K. and Rao D. (1977): Numerical range and accretivity of operator products. J. Math. Anal. Appl. 60, 693–702.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafson K. and Rao D. (1997): Numerical Range (Springer, Berlin).

    Book  Google Scholar 

  • Heitler W. (1954): The Quantum Theory of Radiation (Oxford University Press, London).

    MATH  Google Scholar 

  • Johansen L. (1997): Equivalence between Bell’s inequality and a constraint on stochastic field theories for Einstein-Podolsky-Rosen states. Phys. Rev. A 56, 100–107.

    Article  MathSciNet  ADS  Google Scholar 

  • Krein M. (1969): Angular localization of the spectrum of a multiplicative integral in a Hubert space. Fund. Anal. Appl. 3, 89–90.

    Article  MathSciNet  Google Scholar 

  • Wigner E.P. (1970): On hidden variables and quantum mechanical probabilities. Amer. J. Phys. 38, 1005–1009.

    Article  ADS  Google Scholar 

References

  • Accardi L. and Fedullo A. (1982): On the statistical meaning of complex numbers in quantum mechanics. Lett. Nuovo Cim. 34, 161–172.

    Article  MathSciNet  Google Scholar 

  • Aspect A., Dalibard J., and Roger G. (1982): Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807.

    Article  MathSciNet  ADS  Google Scholar 

  • Bell J. (1964): On the Einstein Podolsky Rosen paradox. Physics 1, 195–200.

    Google Scholar 

  • Baez J. (1987): Bell’s inequality for C*-algebras. Lett Math. Phys. 13, 135–136.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brody T.(1989): The Bell inequality I: Joint Measurability. Rev. Mex. Fis. Suppl. 35, 52–70. Reprinted in The Philosophy Behind Physics, ed. by L. de la Peña and P. Hodgson (Springer, Berlin 1993), pp. 205–222.

    Google Scholar 

  • Landau L. (1987): On the violation of Bell’s inequality in quantum theory. Phys. Lett. A 120, 54–56.

    Article  MathSciNet  ADS  Google Scholar 

  • Primas H. (1988): Comment on Landau (1987). Math. Rev. 88b, 81014.

    Google Scholar 

  • Primas H. (1996): Synchronizität und Zufall. Z. Grenzgeb. Psych. 38, 61–91, here: p. 88.

    Google Scholar 

  • Raggio G.A. (1988): A remark on Bell’s inequality and decomposable normal states. Lett Math. Phys. 15, 27–29.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Selleri F., ed. (1988): Quantum Mechanics Versus Local Realism (Plenum, New York).

    Google Scholar 

  • Wigner E.P. (1970): On hidden variables and quantum mechanical probabilities. Am. J. Phys. 38, 1005–1009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gustafson, K. (1999). The Geometry of Quantum Probabilities. In: Atmanspacher, H., Amann, A., Müller-Herold, U. (eds) On Quanta, Mind and Matter. Fundamental Theories of Physics, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4581-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4581-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5940-4

  • Online ISBN: 978-94-011-4581-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics