Skip to main content

An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae

  • Chapter
Comparative Genomics

Part of the book series: Computational Biology ((COBO,volume 1))

Abstract

The first heuristic for reconstructing phylogenetic trees from gene order data was introduced by Blanchette et al. It sought to reconstruct the breakpoint phytogeny and was applied to a variety of datasets. We present a new heuristic for estimating the breakpoint phylogeny which, although not polynomial-time, is much faster in practice than BPAnalysis. We use this heuristic to conduct a phylogenetic analysis of chloroplast genomes in the flowering plant family Campanulaceae. We also present and discuss the results of experimentation on this real dataset with three methods: our new method, BPAnalysis, and the neighbor-joining method, using breakpoint distances, inversion distances, and inversion plus transposition distances.

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bafna, V. and Pevzner, P. 1998. Sorting by transpositions. SIAM Journal on Discrete Mathematics 11:224–240.

    Article  Google Scholar 

  • Blanchette, M., Bourque, G., and Sankoff, D. 1997. Breakpoint phytogenies. In S. Miyano and T. Takagi (eds.), Genome Informatics, pp. 25–34. Universal Academy Press, Tokyo.

    Google Scholar 

  • Blanchette, M., Kunisawa, T., and Sankoff, D. 1999. Gene order breakpoint evidence in animal mitochondrial phylogeny. Journal of Molecular Evolution 49:193–203.

    Article  PubMed  CAS  Google Scholar 

  • Caprara, A. 1999. Formulations and hardness of multiple sorting by reversals. In S. Istrail, P. A. Pevzner, and M. S. Waterman (eds.), Proceedings of the Third Annual International Conference on Computational Molecular Biology (RECOMB 99), pp. 84–93. ACM, New York.

    Chapter  Google Scholar 

  • Cosner, M. E. 1993. Phylogenetic and molecular evolutionary studies of chloroplast DNA variations in the Campanulaceae. PhD thesis, Ohio State University, Columbus OH.

    Google Scholar 

  • Downie, S. R. and Palmer, J. D. 1992. Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In P. Soltis, D. Soltis, and J. J. Doyle (eds.), Plant Molecular Systematics, pp. 14–35. Chapman and Hall, New York.

    Chapter  Google Scholar 

  • Fitch, W. 1971. Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology 20:406–416.

    Article  Google Scholar 

  • Fitch, W. and Margoliash, E. 1967. Construction of phylogenetic trees. Science 1955:279–284.

    Article  Google Scholar 

  • Foulds, L. R. and Graham, R. L. 1982. The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3:43–49.

    Article  Google Scholar 

  • Hannenhalli, S. and Pevzner, P. A. 1995. Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In Proceedings of the 27th Annual ACM-SIAM Symposium on the Theory of Computing, pp. 178–189.

    Google Scholar 

  • Hoot, S. B. and Palmer, J. D. 1994. Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. Journal of Molecular Evolution 38:274–281.

    Article  PubMed  CAS  Google Scholar 

  • Huson, D., Nettles, S., Rice, K., Warnow, T., and Yooseph, S. 2000. The hybrid tree reconstruction method. ACM Journal of Experimental Algorithms. to appear.

    Google Scholar 

  • Kaplan, H., Shamir, R., and Tarjan, R. E. 1997. Faster and simpler algorithm for sorting signed permutations by reversals. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 344–351. ACM, NewYork.

    Google Scholar 

  • Knox, E. B., Downie, S. R., and Palmer, J. D. 1993. Chloroplast genome rearrangements and the evolution of giant lobelias from herbaceous ancestors. Molecular Biology and Evolution 10:414–430.

    CAS  Google Scholar 

  • Maddison, D. R. 1991. The discover and importance of multiple islands of most-parsimonious trees. Systematic Zoology 40:315–328.

    Article  Google Scholar 

  • Palmer, J. D. 1991. Plastid chromosomes: structure and evolution. In L. Bogorad and I. K. Vasil (eds.), The Molecular Biology of Plastids, volume 7A, pp. 5–53. Academic Press, New York.

    Chapter  Google Scholar 

  • Pe’er, I. and Shamir, R. 1998. The median problems for breakpoints are NP-complete. Electronic Colloquium on Computational Complexity Technical Report 98-071. http://www.eccc.uni-trier.de/eccc.

  • Rice, K. and Warnow, T. 1997. Parsimony is hard to beat! In T. Jiang and D. Lee (eds.), Proceedings, Third Annual International Conference of Computing and Combinatorics (COCOON), pp. 124–133, Shanghai, China.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425.

    PubMed  CAS  Google Scholar 

  • Sankoff, D., Bryant, D., Deneault, M., Lang, B. F., and Burger, G. 2000a. Early eukaryote evolution based on mitochondria! gene order breakpoints. In R. Shamir, S. Miyano, S. Istrail, P. Pevzner, and M. Waterman (eds.), Proceedings of the Fourth Annual International Conference on Computational Molecular Biology (RECOMB 2000), pp. 254–262. ACM, New York.

    Chapter  Google Scholar 

  • Sankoff, D., Deneault, M., Bryant, D., Lemieux, C., and Turmel, M. 2000b. Chloroplast gene order and the divergence of plants and algae, from the normalized number of induced breakpoints. In this volume.

    Google Scholar 

  • Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B. F., and Cedergren, R. J. 1992. Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences USA 89:6575–6579.

    Article  CAS  Google Scholar 

  • Swofford, D. L. 1998. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer, Sunderland, MA.

    Google Scholar 

  • Wyman, S., Cosner, M. E., Jansen, R. K., Moret, B. M. E., Raubeson, L. A., Wang, L.-S., and Warnow, T. 2000. A new fast heuristic for computing the breakpoint phylogeny and a phylogenetic analysis of a group of highly rearranged chloroplast genomes. In 8th International Conference on Intelligent Systems for Molecular Biology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cosner, M.E. et al. (2000). An Empirical Comparison of Phylogenetic Methods on Chloroplast Gene Order Data in Campanulaceae. In: Sankoff, D., Nadeau, J.H. (eds) Comparative Genomics. Computational Biology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4309-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4309-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6584-6

  • Online ISBN: 978-94-011-4309-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics