Skip to main content

Chemical Composition of Dust Expected from Condensation Models

  • Conference paper
Origin and Evolution of Interplanetary Dust

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 173))

Abstract

This review examines to what degrees the present chemical equilibrium condensation models are effective in predicting chemical composition of grains observed in a variety of cosmic environments. The composition expected from the equilibrium calculations is reviewed separately for refractory (rocky and metallic) and volatile (icy) components. Comments are given on the limitation of the equilibrium calculations in predicting the grain composition. By taking cometary ice as a typical cosmic volatile condensate, it is pointed out that its composition is far from that expected from the equilibrium models. Theories on the formation of cometary volatiles are reviewed, and an observational clue helpful to testing the theories is pointed out. Discussion is given on the advantage for formation of organic materials from volatile solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amari, S., Anders, E., Virag, A, and Zinner, E. (1990): ‘Interstellar graphite in meteorites’, Nature 345, 238–240.

    Article  ADS  Google Scholar 

  • Bernatowicz, T., Fraundorf, G., Ming, T., Anders, E., Wopenka, B., Zinner, E., and Fraun-dorf, P. (1987): ‘Evidence for interstellar SiC in the Murray carbonaceous meteorites’, Nature 330, 723–728.

    Article  ADS  Google Scholar 

  • Bradley, J.P. and Brownlee, D.E. (1986): ‘Cometary particles: Thin sectioning and electron beam analysis’, Science 231, 1542–1544.

    Article  ADS  Google Scholar 

  • Bode, M.F. (1988): ‘Observations and modelling of circumstellar dust’, Dust in the Universe, eds. M.E. Bailey and D.A. Williams, Cambridge University Press, Cambridge, pp. 73–102.

    Google Scholar 

  • d’Hendecourt, L.B., Allamandola, L.J., and Greenberg, J.M. (1985): ‘Time dependent chemistry in dense molecular clouds I. Grain surface reactions, gas/grain interactions and infrared spectroscopy’, Astron. Astrophys. 152, 130–150.

    ADS  Google Scholar 

  • Duley, W.W. (1988): ‘Models of interstellar grains’, Dust in the Universe, eds. M.E. Bailey and D.A. Williams, Cambridge University Press, Cambridge, pp. 209–218.

    Google Scholar 

  • Engel, S., Lunine, J.I., and Lewis, J.S. (1990):’ Solar nebula origin for volatiles in Halley’s comet’, Icarus 85, 380–393.

    Article  ADS  Google Scholar 

  • Fegley, B., Jr., and Prinn, R.G. (1989): ‘Solar nebula chemistry: Implications for volatiles in the solar nebula’, The Formation and Evolution of Planetary Systems, eds. H.A. Weaver, and L. Danley, Cambridge Univ. Press., Cambridge, pp. 171–211.

    Google Scholar 

  • Gilman, R.C. (1969): ‘On the composition of circumstellar grains’, Astrophys. J 155, L185–L187.

    Article  ADS  Google Scholar 

  • Grossman, L. and Larimer, J.W. (1974): ‘Early chemical history of the solar system’, Rev. Geophys. Space Phys. 42, 71–101.

    Article  ADS  Google Scholar 

  • Greenberg, J.M. (1971): ‘The chemical and physical properties of interstellar dust’, Molecules in the Galactic Environment, eds. M.A. Gordon and L.E. Snyder, John Wiley &. Sons, New York, pp. 94–124.

    Google Scholar 

  • Greenberg, J.M. (1982): ‘What are comets made of? A model based on interstellar dust’, Comets, ed. L.L. Wilkening, Univ. Arizona Press, Tucson, pp. 131–163.

    Google Scholar 

  • Greenberg, J.M. (1988): ‘The interstellar dust model of comets: post Halley’, Dust in the Universe, eds. M.E. Bailey and D.A. Williams, Cambridge University Press, Cambridge, pp. 121–143.

    Google Scholar 

  • Irvine, W.M. and Hjarmarson, Ã…. (1983): ‘Comets, interstellar molecules, and the origin of life’, Cosmochemistry and the Origin of Life, eds. C. Ponnamperuma, D. Reidel, Dordrecht, pp. 113–142.

    Chapter  Google Scholar 

  • Klinger, J. (1990), ‘Physical properties of frozen volatiles — Their relevance to the study of comet nuclei’, ‘Comets in the Post-Halley Era’, eds. R. Newburn and J. Rahe, Kluwer Academic Publishers, in press.

    Google Scholar 

  • Kissel, J and Krüger, F.R. (1987): ‘The organic component in dust from Comet Halley as measured by the PUMA mass spectrometer on board Vega’ Nature 326, 755–760.

    Article  ADS  Google Scholar 

  • Kouchi, A. and Kuroda, T. (1990): ‘Amorphization of cubic ice by ultraviolet radiation’, Nature 344, 134–135.

    Article  ADS  Google Scholar 

  • Larson, H.P., Weaver, H.A., Mumma, M.J., and Drapatz, S. (1988): ‘Airborne infrared spec-troscopy of Comet Wilson (19861) and comparison with Comet Halley’, Astrophys. J. 338, 1106–1114.

    Article  ADS  Google Scholar 

  • Lewis, J.S. (1974): ‘The temperature gradient in the solar nebula’, Science 186, 440–443.

    Article  ADS  Google Scholar 

  • Lewis, J.S., and Prinn, R.G. (1980): ‘Kinetic inhibition of CO and N2 reduction in the solar nebula’, Astrophys. J. 238, 357–364.

    Article  ADS  Google Scholar 

  • Léger, A. and Puget, J.L. (1984): ‘Identification of the ‘unidentified’ IR emission features of interstellar dust?’, Astron. Astrophys. 137, L5–L8.

    ADS  Google Scholar 

  • Lunine, J.I. (1989): ‘Primitive bodies: Molecular abundances in Comet Halley as probes of cometary formation environment’, The Formation and Evolution of Planetary Systems, eds. H.A. Weaver, L. Danley, and F. Paresce, Cambridge Univ. Press., Cambridge, pp. 213–242.

    Google Scholar 

  • Mumma, M.J., Weaver, H.A., and Larson, H.P. (1987): ‘The ortho-para ratio of water vapor in comet P/Halley’, Astron. Astrophys. 187, 419–424.

    ADS  Google Scholar 

  • Prinn, R.G., and Fegley, B., Jr. (1989):’ Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles’, Origin and Evolution of Planetary and Satellite Atmospheres, eds. S. Atrea, J. Pollack, and M. Matthews, Univ. Arizona Press, Tucson, pp. 78–136.

    Google Scholar 

  • Sakata, A., Wada, S., Tanabé, T., and Onaka, T. (1984): ‘Infrared spectrum of the laboratory-synthesized quenched carbonaceous composite (QCC): Comparison with the infrared unidentified emission bands’, Astrophysical J. Lett. 287, L51–L54.

    Article  ADS  Google Scholar 

  • Salpeter, E.E. (1977): ‘Formation and destruction of dust grains’, Ann. Rev. Astron. Astrophys. 15, 267–293.

    Article  ADS  Google Scholar 

  • Seki, J. and Hasegawa, H. (1981): ‘Origin of amorphous interstellar ice grains’, Prog. Theor. Phys. 66, 903–912.

    Article  ADS  Google Scholar 

  • Weaver, H.A. (1989): ‘The volatile composition of comets’, Highlights Astron. 8, 387–393.

    Article  ADS  Google Scholar 

  • Whittet, D.C.B. (1984): ‘Interstellar grain composition: A model based on elemental depletions’, Mon. Not. R. Astron. Soc. 210, 479–487.

    ADS  Google Scholar 

  • Woolf, N.J. (1975): ‘Circumstellar dust’, Dusty Universe, eds. G.B. Field and A.G.W. Cameron, Neale Watson Academic Publications, Inc., New York, pp. 59–87.

    Google Scholar 

  • Yamamoto, T. (1985): ‘Formation environment of cometary nuclei in the primordial solar nebula’, Astron. Astrophys. 142, 31–36.

    ADS  Google Scholar 

  • Yamamoto, T. (1990a): ‘Chemical theories on the origin of comets’, ‘Comets in the Post-Halley Era’, eds. R. Newburn and J. Rahe, Kluwer Academic Publishers, in press.

    Google Scholar 

  • Yamamoto, (1990b): ‘The origin of comets as viewed from the gaseous composition’, Primitive Solar Nebula and Origin of the Planets, eds. H. Oya, K. Nakazawa, and H. Mizutani, Terra Publishing Company, Tokyo, in press.

    Google Scholar 

  • Yamamoto, T., Nakagawa, N., and Fukui, Y. (1983): ‘The chemical composition and thermal history of the ice of a cometary nucleus’, Astron. Astrophys. 122, 171–176.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Yamamoto, T. (1991). Chemical Composition of Dust Expected from Condensation Models. In: Levasseur-Regourd, A.C., Hasegawa, H. (eds) Origin and Evolution of Interplanetary Dust. Astrophysics and Space Science Library, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3640-2_85

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3640-2_85

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5616-8

  • Online ISBN: 978-94-011-3640-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics