Skip to main content

Biochemical basis of aluminium tolerance in plant cells

  • Chapter
Plant-Soil Interactions at Low pH

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 45))

Abstract

To be considered in this treatise are recent developments on biochemical aspects of aluminium tolerance and toxicity. Advances in aluminium biochemistry are best illustrated by knowledge gained in the area of aluminium uptake across the plasma membrane and by the putative role of aluminium in transmembrane signalling pathways.

Initial studies indicate that aluminium is taken up by endocytotic mechanisms, either via non- saturable, fluid-phase endocytosis or through saturable, membrane receptor-mediated endocytosis involving specific carriers. These uptake modes are respectively exemplified by aluminium internalization involving polysaccharides and carriers, perhaps present in the rhizosphere. Regarding aluminium interiorization, a working hypothesis can be formulated explaining endocytotic uptake followed by processing along intracellular pathways that in part determine aluminium’s final destination. Given the complexity of endocytotic processes, genetic defects at the plasma membrane or at internal membranes probably lead to deficiencies in aluminium’s uptake and intracellular routing, respectively.

As to cellular communication, aluminium fluoride has been implicated in being a ligand for membrane-associated G proteins which function as intermediaries in signal transduction. G proteins in part control phosphoinositide hydrolysis which in turn is crucial for the release of second messenger molecules. Aluminium-related interaction with components of signalling pathways is expected to affect the cell’s capability of processing sensory information.

Findings are also presented on aluminium-enhanced membrane lipid peroxidation, aluminium interference with cytoskeletal elements, calmodulin, and the chromatin structure.

The challenge will be to elucidate biochemical mechanisms of aluminium toxicity as a basis for designing aluminium tolerant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeson M A, Munns D N and Burau R G 1989 Adsorption of Al3+ to phosphatidylcholine vesicles. Biochim. Biophys. Acta 986, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Akeson M A and Munns D N 1989 Lipid bilayer permeation by neutral aluminum citrate and by three alpha-hydroxy carboxylic acids. Biochim. Biophys. Acta 984, 200–206.

    Article  PubMed  CAS  Google Scholar 

  • Akitt J W 1989 Multinuclear studies of aluminum compounds. Progr. NMR Spectr. 21, 1–149.

    Article  Google Scholar 

  • Allan E and Trewavas A 1985 Quantitative changes in calmodulin and NAD kinase during early cell development in the root apex of Pisum sativum L. Planta 165, 493–501.

    Article  CAS  Google Scholar 

  • Bennet R J, Breen C M and Fey M V 1985a The primary site of aluminium injury in the root of Zea mays L. South Afr. J. Plant Soil 2, 8–17.

    Article  CAS  Google Scholar 

  • Bennet R J, Breen C M and Fey M V 1985b Aluminium uptake sites in the primary root of Zea mays L. South Afr. J. Plant Soil 2, 1–7.

    Article  CAS  Google Scholar 

  • Berridge M J 1987 Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56, 159–193.

    Article  PubMed  CAS  Google Scholar 

  • Braam J and Davis R W 1990 Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60, 357–364.

    Article  PubMed  CAS  Google Scholar 

  • Branton D and Jacobson L 1962 Iron localization in pea plants. Plant Physiol. 37, 546–551.

    Article  PubMed  CAS  Google Scholar 

  • Castignetti D and Smarrelli J 1986 Siderophores, the iron nutrition of plants, and nitrate reductase, FEBS Lettr. 209, 147–151.

    Article  CAS  Google Scholar 

  • Chapman D and Hayward J A 1985 New biophysical techniques and their application to the study of membranes. Biochem. J. (London) 228, 281–295.

    CAS  Google Scholar 

  • Cho S W and Joshi J G 1989 Time dependent inactivation of glucose-6-phosphate dehydrogenase from yeast by aluminum. Toxicol. 47, 215–219.

    CAS  Google Scholar 

  • Cline G R, Reid C C P, Powell P E and Szaniszlo P J 1984 Effects of a hydroxamate siderophore on iron absorption by sunflower and sorghum. Plant Physiol. 76, 36–39.

    Article  PubMed  CAS  Google Scholar 

  • Coleman J, Evans D and Hawes C 1988 Plant coated vesicles. Plant, Cell Environment 11, 669–684.

    Article  CAS  Google Scholar 

  • Conner A J and Meredith C P 1985 Simulating the mineral environment of aluminum toxic soils in plant tissue culture. J. Exp. Bot. 36, 870–880.

    Article  CAS  Google Scholar 

  • Cullis P R, De Kruijff B, Hope M J, Nayar R and Schmid S L 1980 Phospholipids and membrane transport. Can. J. Biochem. 58, 1091–1100.

    Article  PubMed  CAS  Google Scholar 

  • Deleers M, Servais J P and Wülfert E 1986 Neurotoxic cations induce membrane rigidification and membrane fusion at micromolar concentrations. Biochim. Biophys. Acta 855, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Deleers M, Servais J P and Wülfert E 1987 Aluminum-induced lipid phase separation and membrane fusion does not require the presence of negatively charged phospholipids. Biochem. Int. 14, 1023–1034.

    PubMed  CAS  Google Scholar 

  • Deufel J 1951 Untersuchungen über den Einfluss von Chemikalien und Röntgenstrahlen auf die Mitose von Vicia faba. Chromosoma 4, 239–272.

    Article  PubMed  CAS  Google Scholar 

  • Domingo J L, Gomez M, Llobet J M and Corbella J 1988 Citric, malic and succinic acids as possible alternatives to deferroxamine in aluminum toxicity. Clin. Toxicol. 26, 67–79.

    Article  CAS  Google Scholar 

  • Erdei L, Berczi A and Zsoldos F 1981 Membrane and ion transport properties in cereals under acidic alkaline stress. Physiol. Plant. 53, 471–474.

    Article  CAS  Google Scholar 

  • Foy C D, Chaney R L and White M C 1978 The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol. 29, 511–566.

    Article  CAS  Google Scholar 

  • Foy C D 1988 Plant adaptation to acid, aluminum-toxic soils. Comm. Soil Sci. Plant Anal. 19, 959–987.

    Article  CAS  Google Scholar 

  • Ganrot P O 1986 Metabolism and possible health effects of aluminum. Environm. Health Perspect. 65, 363–441.

    CAS  Google Scholar 

  • Gilman A G 1987 G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615–649.

    Article  PubMed  CAS  Google Scholar 

  • Godbold D L, Fritz E and Hüttermann A 1988 Aluminum toxicity and forest decline. Proc. Nat. Acad. Sci. USA 85, 3888–3892.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge J M C, Quinlan G J, Clark I and Halliwell B 1985 Aluminium salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim. Biophys. Acta 835, 441–447.

    Article  PubMed  CAS  Google Scholar 

  • Haridasan M 1982 Aluminium accumulation by some cerrado native species of central Brazil. Plant and Soil 65, 265–273.

    Article  CAS  Google Scholar 

  • Haridasan M and De Araujo G M 1988 Aluminium-accumulating species in two forest communities in the Cerrado region of central Brazil. Forest Ecol. Managern. 24, 15–26.

    Article  CAS  Google Scholar 

  • Hartley F R, Burgess C and Alcock R M 1980 Solution Equilibria. Wiley, New York, NY. 361 p.

    Google Scholar 

  • Haug A 1984 Molecular aspects of aluminum toxicity. CRC Crit. Rev. Plant Sci. 1, 345–373.

    Article  CAS  Google Scholar 

  • Haug A and Caldwell C R 1985 Aluminum toxicity in plants: The role of the root plasma membrane and calmodulin. In Frontiers of Membrane Research in Agriculture. Eds. J B St. John. E Berlin and P C Jackson. pp 359–381. Rowman & Allanheld, Totowan, NJ.

    Google Scholar 

  • Henderson S K, Desplaines K and Henderson D E 1989 HPLC separation and detection of inositol phosphate iso-mers. Biochrom. 4, 89–93.

    CAS  Google Scholar 

  • Horst W J, Wagner A and Marschner H 1983 Effect of aluminium on root growth, cell division rate and mineral element contents in roots of Vigna unguiculata genotypes. Z. Pflanzenphysiol. 109, 95–103.

    Article  CAS  Google Scholar 

  • Hübner R, Depta H and Robinson D G 1985 Endocytosis in maize root cap cells. Protoplasma 129, 214–222.

    Article  Google Scholar 

  • Ichimura K, Kihara H, Yamamura T and Satake K 1989 Negative cooperativity of chicken ovotransferrin on Al(III)-binding. J. Biochem. (Tokyo) 106, 50–54.

    CAS  Google Scholar 

  • Itoh F, Minamide Y, Horie T and Awazu S 1989 Time dependent changes occurring in rat liver microsomes upon lipid peroxidation. Lipids 24, 905–908.

    Article  PubMed  CAS  Google Scholar 

  • Johnson G V W and Jope R S 1986 Aluminum impairs glucose utilization and cholinergic activity in rat brain in vitro. Toxicol. 40, 93–102.

    Article  CAS  Google Scholar 

  • Kappus H 1987 Oxidative stress in chemical toxicology. Arch. Toxicol. 60, 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Karlik S J and Eichhorn G L 1989 Polynucleotide cross-linking by aluminum. J. Inorgan. Biochem. 37, 259–269.

    Article  CAS  Google Scholar 

  • Klausner R D and Kleinfeld A M 1984 Lipid domains in membranes. In Cell Surface Dynamics: Concepts and Models. Eds. A S Perelson, C DeLisi and F W Wiegel. pp 23–58. Marcel Dekker, Inc., New York, NY.

    Google Scholar 

  • Konishi S, Miyamoto S and Taki T 1985 Stimulator effects of aluminum on tea plants grown under low and high phosphorus supply. Soil Sci. Plant Nutr. 31, 361–368.

    Article  CAS  Google Scholar 

  • Koyama H, Okawara R, Ojima K and Yamaya T 1988 Reevaluation of characteristics of a carrot cell line previously selected as aluminum-tolerant cells. Physiol. Plant. 74, 683–687.

    Article  CAS  Google Scholar 

  • Kury P G, Ramwell P W and McConnell H M 1974 The effects of prostaglandins E1 and E2 on the human erythrocyte as monitored by spin labels. Biochem. Biophys. Res. Comm. 56, 478–483.

    Article  PubMed  CAS  Google Scholar 

  • Lange A J, Arion W J, Burchell A and Burchell B 1986 Aluminum ions are required for stabilization and inhibition of hepatic microsomal glucose-6-phosphatase by sodium fluoride. J. Biol. Chem. 261, 101–107.

    PubMed  CAS  Google Scholar 

  • Laussac J P and Commenges G 1983 1H, 13C, 31P and 27Al NMR study of aluminum-ATP complexes. A possible relation with its biological application. Nouv. J. Chim. 7, 579–585.

    Google Scholar 

  • Lewis T E 1989 (Ed.) Environmental Chemistry and Toxicology of Aluminum. Lewis Publ., Chelsea, MI. 344 p.

    Google Scholar 

  • Lynch J M 1976 Products of soil microorganisms in relation to plant growth. CRC Crit. Rev. Microbiol. 5, 67–107.

    CAS  Google Scholar 

  • Macdonald T L, Humphreys W G and Martin R B 1987 Promotion of tubulin assembly by aluminum ion. Science 236, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson M K, Halldorsson H, Kjeld M and Thorgeirsson G 1989 Endothelial inositol phosphate generation and prostacyclin production in response to G-protein activation by AlF 4 . Biochem. J (London) 264, 703–711.

    CAS  Google Scholar 

  • Makarow M 1985 Endocytosis in Saccharomyces cerevisiae: Internalization of alpha-amylase and fluorescent dextran into cells. EMBO J. 4, 1861–1866.

    PubMed  CAS  Google Scholar 

  • Marschner H, Kalisch A and Romheld V 1974 Mechanism of iron uptake in different plant species. Proc. 7th Internat. Colloquium on Plant Analysis and Fertilizer Problems. pp 273–281. Hannover, Germany

    Google Scholar 

  • Matsumoto H, Hirasawa E, Torikai H and Takahashi E 1976 Localization of absorbed aluminium in pea root and its binding to nucleic acids. Plant Cell Physiol. 17, 127–137.

    CAS  Google Scholar 

  • Matsumoto H and Yamaya T 1986 Inhibition of potassium uptake and regulation of membrane-associated Mg2+-ATPase activity of pea roots by aluminium. Soil Sci. Plant Nutr. 32, 179–188.

    Article  CAS  Google Scholar 

  • Matsumoto H 1987 Reduced stability of chromatic structure of pea roots grown under calcium starvation. Plant Cell Physiol. 28, 643–652.

    CAS  Google Scholar 

  • Matsumoto H 1988 Changes of the structure of pea chromatin by aluminum. Plant Cell Physiol. 29, 281–287.

    CAS  Google Scholar 

  • McLachlan D R C 1989 Aluminum neurotoxicity: criteria for assigning a role in Alzheimer’s disease. In Environmental Chemistry and Toxicology of Aluminum. Ed. T E Lewis. pp 299–315. Lewis Publ., Chelsea, MI.

    Google Scholar 

  • Miquel J, Quintanilha A T and Weber H 1989 Handbook of free radicals and antioxidants in biomedicine. Vol. I. CRC Press, Boca Raton, FL. 337 p.

    Google Scholar 

  • Muto S and Miyachi S 1986 Roles of calmodulin dependent and independent NAD kinases in regulation of nicotinamide coenzyme levels of green plant cells. In Molecular and Cellular Aspects of Calcium in Plant Development. Ed. A J Trewavas. pp 107–114. Plenum Press, New York, NY.

    Chapter  Google Scholar 

  • Naccache P H 1989 G Proteins and Calcium Signaling. CRC Press, Boca Raton, FL. 160 p.

    Google Scholar 

  • Neilands J B 1981 Microbial iron compounds. Annu. Rev. Biochem. 50, 715–731.

    Article  PubMed  CAS  Google Scholar 

  • Neilands J B and Leong S A 1986 Siderophores in relation to plant growth and disease. Annu. Rev. Plant Physiol. 37, 187–208.

    Article  CAS  Google Scholar 

  • Niedziela G and Aniol A 1983 Subcellular distribution of aluminium in wheat roots. Acta Biochim. Polon. 30, 99–105.

    PubMed  CAS  Google Scholar 

  • Nightingale E R 1959 Phenomenological theory of ion solvation: Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387.

    Article  CAS  Google Scholar 

  • Öhman L O 1988 Equilibrium and structural studies of silicon(IV) and aluminum(III) in aqueous solutions. 17. Stable and metastable complexes in the system H+-Al3+-citric acid. Inorgan. Chem. 27, 2565–2570.

    Article  Google Scholar 

  • Pastan I and Willingham M C 1985 (Eds.) Endocytosis. Plenum Press, New York, NY. 326 p.

    Google Scholar 

  • Pearse B M F and Crowther R A 1987 Structure and assembly of coated vesicles. Annu. Rev. Biophys. 16, 49–68.

    Article  CAS  Google Scholar 

  • Pettersson A, Hällbom L and Bergman B 1986 Aluminium uptake by Anabaena cylindrica. J. Gen. Microbiol. 132, 1771–1774.

    CAS  Google Scholar 

  • Pettersson A and Bergman B 1989 Effects of aluminium on ATP pools and utilization in the cyanobacterium Anabaena cylindrica: A model for the in vivo toxicity. Physiol. Plant. 76, 527–534.

    Article  CAS  Google Scholar 

  • Pettersson S and Strid H 1989 Effects of aluminium on growth and kinetics of K+(86Rb) uptake in two cultivars of wheat with different sensitivity to aluminium. Physiol. Plant. 76, 255–261.

    CAS  Google Scholar 

  • Piazza G A and Wallace R W 1985 Calmodulin accelerates the rate of polymerization of human platelet actin and alters the structural characteristics of actin filaments. Proc. Nat. Acad. Sci. USA 82, 1683–1687.

    Article  PubMed  CAS  Google Scholar 

  • Putterill J J and Gardner R C 1988 Proteins with the potential to protect plants from Al3+ toxicity. Biochim. Biophys. Acta 964, 137–145.

    Article  CAS  Google Scholar 

  • Quinlan G J, Halliwell B, Moorhouse C P and Gutteridge J M C 1988 Action of lead(II) and aluminium(III) ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim. Biophys. Acta 962, 196–200.

    Article  PubMed  CAS  Google Scholar 

  • Rana R S and Hokin L E 1990 Role of phosphoinositides in transmembrane signaling. Physiol. Rev. 70, 115–164.

    PubMed  CAS  Google Scholar 

  • Rasmussen C D and Means A R 1987 Calmodulin as regulator of cell growth and gene expression. J. Gen. Physiol. 19, 288–293.

    Google Scholar 

  • Robinson D G and Depta H 1988 Coated vesicles. Annu. Rev. Plant Physiol. 39, 53–99.

    CAS  Google Scholar 

  • Sandmann G and Böger P 1983 The enzymological function of heavy metals and their role in electron transfer processes of plants. In Inorganic Plant Nutrition. Eds. A Läuchli and R L Bieleski. pp 563–596. Springer-Verlag, Berlin.

    Google Scholar 

  • Schaeffer H J and Walton J D 1990 Aluminium ions induce oat protoplasts to produce an extracellular (1→3) β-D glucan. Plant Physiol. 94, 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Schuber F 1989 Influence of polyamines on membrane functions. Biochem. J. (London) 260, 1–10.

    CAS  Google Scholar 

  • Shann J R and Bertsch P M 1988 Al and Ca interactions with isolated cell wall preparations. 80th annual meeting of ASA/SSSA, Anaheim, CA. p. 249.

    Google Scholar 

  • Shi B and Haug A 1988 Uptake of aluminum by lipid vesicles. Toxicol. Environm. Chem. 17, 337–349.

    Article  CAS  Google Scholar 

  • Shi B and Haug A 1990 Aluminum uptake by neuroblastoma cells. J. Neurochem. 55, 551–558.

    Article  PubMed  CAS  Google Scholar 

  • Shortle W C and Smith K T 1988 Aluminum-induced calcium deficiency syndrome in declining red spruce. Science 240, 1017–1018.

    Article  PubMed  CAS  Google Scholar 

  • Simpson R J, Moore R and Peters T J 1988 Significance of non-esterified fatty acids in iron uptake by intestinal brush border membrane vesicles. Biochim. Biophys. Acta 941, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Slaski J J 1989 Effect of aluminium on calmodulin-dependent and calmodulin-independent NAD kinase activity in wheat root tips. J. Plant Physiol. 133, 696–701.

    Article  CAS  Google Scholar 

  • Slaski J J and Aniol A 1987 Effect of calmodulin inhibitors on aluminium toxicity in cereals. Acta Physiol. Plant. 9, 13–23.

    CAS  Google Scholar 

  • Slaughter G R, Meistrich M L and Means A R 1989 Expression of RNA’s for calmodulin, actins, and tubulins in rat testis cells. Biol. Reproduct. 40, 395–405.

    Article  CAS  Google Scholar 

  • Sommarin M and Sandelius A S 1988 Phosphatidylinositol and phosphatidyl-inositolphosphate kinases in plant plasma membranes. Biochim. Biophys. Acta 958, 268–278.

    Article  CAS  Google Scholar 

  • Sposito G 1989 The Environmental Chemistry of Aluminum. CRC Press, Inc., Boca Raton, FL. 336 p.

    Google Scholar 

  • Stoclet J C, Gerard D, Kolhoffer M C, Lugnier C, Miller R and Schaeffer P 1987 Calmodulin and its role in intracellular calcium regulation. Progr. Neurobiol. 29, 321–364.

    Article  CAS  Google Scholar 

  • Stummvoll H K, Graf H and Meisinger V 1984 Effect of desferrioxamine on aluminum kinetics during hemodialysis. Mineral Electrolyte Metab. 10, 263–266.

    CAS  Google Scholar 

  • Suhayda C G and Haug A 1986 Organic acids reduce aluminum toxicity in maize root membranes. Physiol. Plant. 68, 189–195.

    Article  CAS  Google Scholar 

  • Tadolini B, Cabrini L, Landi L, Varani E and Pasquali P 1984 Polyamine binding to phospholipid vesicles and inhibition of lipid peroxidation. Biochem. Biophys. Res. Comm. 122, 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Taylor G J 1988 The physiology of aluminum tolerance. In Metal Ions in Biological Systems. Ed. H Sigel. Vol. 24, pp 165–198. Marcel Dekker, Inc., New York, NY.

    Google Scholar 

  • Taylor G J 1988 The physiology of aluminum tolerance in higher plants. Comm. Soil Sci. Plant Anal. 19, 1179–1194.

    Article  CAS  Google Scholar 

  • Thompson J E, Chia L S, Barber R F and Sridhara S 1985 Comparative effects of senescence and chemical stress on the molecular organization of plant membranes. In Frontiers of Membrane Research in Agriculture. Eds. J B St. John, E Berlin and P C Jackson. pp 319–334. Rowan and Allanheld, Totowan, NJ.

    Google Scholar 

  • Wagatsuma T and Yamasaku K 1985 Relationship between differential aluminum tolerance and plant-induced pH change of medium among barley cultivars. Soil Sci. Plant Nutr. 31, 521–535.

    Article  CAS  Google Scholar 

  • Wagatsuma T, Kyuuda T and Sakuraba A 1987 Aluminum accumulation characteristics of aluminum-tolerant plants. Bull. Yamagata Univ., Agr. Sci. 10, 355–359.

    CAS  Google Scholar 

  • Walker P R, LeBlanc J and Sikorska M 1989 Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochem. 28, 3911–3915.

    Article  CAS  Google Scholar 

  • Weis C and Haug A 1987 Aluminum-induced conformational changes in calmodulin alter the dynamics of interaction with melittin. Arch. Biochem. Biophys. 254, 304–312.

    Article  PubMed  CAS  Google Scholar 

  • Weis C and Haug A 1989 Aluminum-altered membrane dynamics in human red blood cell white ghosts. Thromb. Res. 54, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Whallon J H and Flegler S L 1986 Determination of bound elements in mitotic chromosomes of Zea mays by energy-dispersive X-ray analysis. Cytobios 48, 45—61.

    Google Scholar 

  • Xu Y, Ashgar A, Gray J I, Pearson A M, Haug A and Grulke E A 1990 ESR spin trapping of free radicals generated by hydrogen peroxide activation of metmyoglobin. J. Agr. Food Chem. 38, 1494–1497.

    Article  CAS  Google Scholar 

  • Yokel R A and Kostenbauder H B 1987 Assessment of potential aluminum chelators in an octanol/aqueous system and in the aluminum-loaded rabbit. Toxicol. Appl. Pharmacol. 91, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Yuan S and Haug A 1988 Frictional resistance to motions of bimane-labelled spinach calmodulin in response to ligand binding. FEBS Lettr. 234, 218–223.

    Article  CAS  Google Scholar 

  • Yuan S and Haug A 1988 Ligand-triggered conformational perturbations elicit changes at the single cysteinyl residue to spinach calmodulin. Eur. J. Biochem. 175, 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Zhao X J, Sucoff E I and Stadelmann E J 1987 Al3+ and Ca2+ alteration of membrane permeability of Quercus rubra root cortex cells. Plant Physiol. 83, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Zsoldos F and Erdei L 1981 Membrane and transport properties in cereals under acidic and alkaline stress. Physiol. Plant. 53, 468–470.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haug, A., Shi, B. (1991). Biochemical basis of aluminium tolerance in plant cells. In: Wright, R.J., Baligar, V.C., Murrmann, R.P. (eds) Plant-Soil Interactions at Low pH. Developments in Plant and Soil Sciences, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3438-5_94

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3438-5_94

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5520-8

  • Online ISBN: 978-94-011-3438-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics