Skip to main content

Starch biosynthesis and the potential for its manipulation

  • Chapter
Biosynthesis and Manipulation of Plant Products

Part of the book series: Plant Biotechnology Series ((PBS))

Abstract

Starch is the major form of carbon reserve in plants. Almost all plant organs accumulate it at some stage in their development, and it constitutes half or more of the dry weight of many storage organs, for example tubers, storage roots, and the seeds of cereals and some legumes. Perhaps because it is such an abundant natural product, there has until recently been little interest in how its production in plants might be manipulated. In the last five years, however, starch synthesis has received increasing attention for two main reasons. First, there is a desire to manipulate the overall composition of the harvested parts of plants in nutritionally and commercially useful ways. Starch is a major component of many of these harvested parts, and an understanding of the regulation of its accumulation will aid attempts to make directed changes in composition. Second, there is a desire to produce a range of cultivars with starches of differing properties within single crop species. Starch has many food and industrial uses, and these require different sorts of starch with distinct physical and chemical properties. The required properties are usually produced by various chemical modifications of extracted starch. Manipulation to create cultivars which produce starches with the required properties would reduce dependence on this chemical processing. Such manipulation requires a knowledge of the way in which the properties of starch are determined during its synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C.A., Rinne, R.W. and Fjerstad, M.C. (1980) Starch deposition and carbohydrase activities in developing and germinating soya bean seeds. Ann. Bot. 45: 577–582.

    CAS  Google Scholar 

  • Alban, C., Joyard, J. and Douce, R. (1988) Preparation and characterisation of envelope membranes from non-green plastids. Plant Physiol. 88: 709–717.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.M., Hnilo, J., Larson, R., Okita, T.W., Morell, M. and Preiss, J. (1989) The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase and its homology to the bacterial enzyme. J. Biol. Chem. 264:12238–12242.

    PubMed  CAS  Google Scholar 

  • Anderson, J.M., Okita, T.W. and Preiss, J. (1990) Enhancing carbon flow into starch: the role of ADPglucosepyrophosphorylase. In The Molecular and Cellular Biology of the Potato (Vayda, M.E. and Park, W.D., eds), CAB International, Wallingford, Oxford, pp. 159–179

    Google Scholar 

  • ap Rees, T. (1988) Hexose phosphate metabolism by nonphotosynthetic tissues of higher plants. In The Biochemistry of Plants, Vol. 14: Carbohydrates (Preiss, J., ed.), Academic Press, San Diego, pp. 1–34.

    Google Scholar 

  • ap Rees, T., Fuller, W.A. and Wright, B.W. (1976) Pathways of carbohydrate oxidation during thermogenesis by the spadix of Arum maculatum. Biochim. Biophys. Acta 437: 22–35.

    Article  PubMed  CAS  Google Scholar 

  • ap Rees, T., Wright, B.W. and Fuller, W.A. (1977) Measurements of starch breakdown as estimates of glycolysis during thermogenesis by the spadix of Arum maculatum L. Planta 134: 53–56.

    Article  Google Scholar 

  • ap Rees, T., Leja, M., Macdonald, F.D. and Green, J.H. (1984) Nucleotide sugars and starch synthesis in spadix of Arum maculatum and suspension cultures of Glycine max. Phytochem. 23:2463–2468.

    Article  Google Scholar 

  • ap Rees, T., Morell, S., Edwards, J., Wilson, P.M. and Green, J.H. (1985) Pyrophosphate and the glycolysis of sucrose in higher plants. In Regulation of Carbon Partitioning in Photosynthetic Tissue (Heath, R.L., and Preiss, J., eds), Waverley Press, Baltimore, pp. 27–44.

    Google Scholar 

  • Baba, T., Noro, M., Hiroto, M. and Arai, Y. (1990) Properties of primer-dependent starch synthesis cataylsed by starch synthase from potato tubers. Phytochem. 29,719–723.

    Article  CAS  Google Scholar 

  • Badenhuizen, N.P. (1969) The Biogenesis of Starch Granules in Higher Plants. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Bae, J.M., Giroux, M. and Hannah, L. (1990) Cloning and characterisation of the brittle-2 gene of maize. Maydica 35: 317–322.

    Google Scholar 

  • Baecker, P.A., Greenberg, E. and Preiss, J. (1986) Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli 1,4-α-d-glucan: 1,4-α-d-glucan 6-α-d-(l,4-α-d-glucano)-transferase as deduced from the nucleotide sequence of the glgB gene. J. Biol. Chem. 261: 8738–8743.

    PubMed  CAS  Google Scholar 

  • Banks, W. and Greenwood, C.T. (1975) Starch and its Components. Edinburgh University Press, Edinburgh.

    Google Scholar 

  • Banks, W. and Muir, D.D. (1980) Structure and chemistry of the starch granule. In The Biochemistry of Plants, Vol. 3: Carbohydrates: structure and function (Preiss, J., ed.), Academic Press, New York, pp.321–369.

    Google Scholar 

  • Barlow, P.W. (1975) The root cap. In The Development and Function of Roots (Torrey, J.G. and Clarkson, D.T., eds), Academic Press, London, pp. 22–54.

    Google Scholar 

  • Beck, E. (1985) The degradation of transitory starch granules in chloroplasts. In Regulation of Carbon Partitioning in Photosynthetic Tissue (Heath, R.L. and Preiss, J., eds), Waverley Press, Baltimore, pp. 27–44.

    Google Scholar 

  • Bettey, M. and Smith, A.M. (1990) Nature of the effect of the r locus on the lipid content of embryos of peas (Pisum sativum L.) Planta 180:420–128.

    Article  CAS  Google Scholar 

  • Bhattacharyya, M.K., Smith, A.M., Ellis, T.H.N., Hedley, C. and Martin, C. (1990) The wrinkled-seed character of peas described by Mendel is caused by a transposon-like insertion in a gene encoding starch branching enzyme. Cell 60: 115–122. Bhave, M.R., Lawrence, S., Barton, C. and Hannah, L.C. (1990) Identification and molecular characterisation of shrunken-2 cDNA clones of maize. Plant Cell 2: 581–588.

    Google Scholar 

  • Bhullar, S.S. and Jenner, C.R. (1986) Effects of temperature on the conversion of sucrose to starch in the developing wheat endosperm. Aust. J. Plant Physiol. 13: 605–615.

    Article  CAS  Google Scholar 

  • Bils, R.F. and Howell, R.W. (1963) Biochemical and cytological changes in developing soybean cotyledons. Crop Sci. 3: 304–308.

    Article  CAS  Google Scholar 

  • Blennow, A. and Johansson, G. (1991) Isolation of a Q-enzyme with M r 103 000 from potato tubers. Phytochem. 30: 437–444.

    Article  CAS  Google Scholar 

  • Borchert, S., Grosse, H. and Heldt, H.W. (1989) Specific transport of inorganic phosphate, glucose 6-phosphate, dihydroxyacetone phosphate and 3-phosphoglycerate into amyloplasts from pea roots. FEBS Lett. 253: 183–186.

    Article  CAS  Google Scholar 

  • Borovsky, D., Smith, E.E. and Whelan, W.J. (1975) Purification and properties of potato 1,4-α-d-glucan: 1,4-α-d-glucan 6-(l,4-α-d-glucano)-transferase. Er. J. Biochem. 59: 615–625.

    Article  CAS  Google Scholar 

  • Borovsky, D., Smith, E.E. and Whelan, W.J. (1976) On the mechanism of amylose branching by potato Q-enzyme. Eur. J. Biochem. 62: 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Borovsky, D., Smith, E.E., Whelan, W.J., French, D. and Kikumoto, S. (1979) The mechanism of Q-enzyme action and its influence on the structure of amylopectin. Arch. Biochem. Biophys. 198: 627–631.

    Article  PubMed  CAS  Google Scholar 

  • Bowsher, C.G., Hucklesby, D.P. and Emes, M.J. (1989) Nitrite reduction and carbohydrate metabolism in plastids purified from roots of Pisum sativum L. Planta 177: 359–366.

    Article  CAS  Google Scholar 

  • Boyer, C.D. (1985) Soluble starch synthases and starch-branching enzymes from developing seeds of Sorghum. Phytochem. 24: 15–18.

    Article  CAS  Google Scholar 

  • Boyer, C.D. and Preiss, J. (1978a) Multiple forms of (1,4)-α-d-glucan, (1,4)-α-d-glucan-6-glycosyl transferase from developing Zea mays kernels. Carbohydr. Res. 61: 312–334.

    Article  Google Scholar 

  • Boyer, C.D. and Preiss, J. (1978b) Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem. Biophys. Res. Commun. 80: 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, C.D. and Preiss, J. (1979) Properties of citrate-stimulated starch synthesis catalysed by starch synthase I of developing maize kernels. Plant Physiol. 64: 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, C.D. and Preiss, J. (1981) Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol. 67: 1141–1145.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, C.D., Simpson, E.K.G. and Damewood, P.A. (1982) The possible relationship of starch and phytoglycogen in sweet corn. II. The role of branching enzyme. Stärke 34: 181–185.

    Article  Google Scholar 

  • Briarty, J.G., Hughes, C.E. and Evers, A.D. (1979) The developing endosperm of wheat—a stereological analysis. Ann. Bot. 44: 641–658.

    Google Scholar 

  • Bucke, C. (1970) The distribution and properties of alkaline inorganic pyrophosphatase from higher plants. Phytochem. 9: 1303–1309.

    Article  CAS  Google Scholar 

  • Buttrose, M.S. (1962) The influence of environment on the shell structure of starch granules. J. Cell Biol. 14: 159–167.

    Article  PubMed  CAS  Google Scholar 

  • Buttrose, M.S. (1963a) Electron microscopy of acid-degraded starch granules. Stärke 3: 85–92.

    Article  Google Scholar 

  • Buttrose, M.S. (1963b) Ultrastructure of the developing wheat endosperm. Aust. J. Biol. Sci. 16: 305–317.

    Google Scholar 

  • Caley, C.Y., Duffus, C.M. and Jeffcoat, B. (1990) Effects of elevated temperature and reduced water uptake on enzymes of starch synthesis in developing wheat grains. Aust. J. Plant Physiol. 17: 431–439.

    Article  CAS  Google Scholar 

  • Caspar, T. and Pickard, B.G. (1989) Gravitropism in a starchless mutant of Arabidopsis. Planta 177: 185–197.

    Article  PubMed  CAS  Google Scholar 

  • Caspar, T., Huber, S.C. and Somerville, C. (1985) Alterations in growth, photosynthesis and respiration in a starchless mutant of Arabidopsis thaliana (L.) Heynh. deficient in chloroplast phosphoglucomutase activity. Plant Physiol. 79: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Chatterton, N.J. and Silvius, J.E. (1980) Photosynthetic partitioning into leaf starch as affected by daily photosynthetic period duration in six species. Physiol. Plant. 49: 141–144.

    Article  Google Scholar 

  • Colonna, P. and Mercier, C. (1984) Macromolecular structure of wrinkled- and smooth-pea starch components. Carbohydr. Res. 126: 233–247.

    Article  CAS  Google Scholar 

  • Dang, P.L. and Boyer, C.D. (1988) Maize leaf and kernel starch synthases and starch branching enzymes. Phytochem. 27: 1255–1259.

    Article  CAS  Google Scholar 

  • Davies, D.R. (1980) The r a locus and legumin synthesis in Pisum sativum. Biochem. Genet. 18: 1207–1219.

    Article  PubMed  CAS  Google Scholar 

  • Davies, J.W. and Cocking, E.C. (1965) Changes in carbohydrates, proteins and nucleic acids during cellular development in tomato locule tissue. Planta 67: 242–253.

    Article  CAS  Google Scholar 

  • Deatherage, W.L., MacMasters, M.M., Vineyard, M.L. and Bear, R.P. (1954) A note on starch of high amylose content from corn with high starch content. Cereal Chem. 31: 50–52.

    CAS  Google Scholar 

  • Denyer, K. and Smith, A.M. (1992) The purification and characterisation of two forms of soluble starch synthase from pea embryos. Planta 186: 607–617

    Article  Google Scholar 

  • Dickinson, D.B. and Preiss, J. (1969) Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol. 44: 1058–1062.

    Article  PubMed  CAS  Google Scholar 

  • Di Fonzo, N., Fornasari, E., Gentinetta, E., Salamini, F. and Soave, C. (1978) Proteins and carbohydrate accumulation in normal, opaque-2 and floury maizes. In Carbohydrate and Protein Synthesis (Miflin, B.J. and Zoschke, M., eds), Commission of the European Communities, Brussels-Luxembourg, pp. 199–212.

    Google Scholar 

  • Doll, H. (1984) Nutritional aspects of cereal proteins and approaches to overcome their deficiencies. Phil. Trans. R. Soc. Lond. B 304: 373–380.

    Article  CAS  Google Scholar 

  • Dry, I., Smith, A.M., Edwards, E.A., Bhattacharyya, M., Dunn, P. and Martin, C. (1992) Characterisation of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs. Plant J. 2: 193–202.

    PubMed  CAS  Google Scholar 

  • Duffus, C.M. (1984) Metabolism of reserve starch. In Storage Carbohydrates in Vascular Plants (Lewis, D.H., ed.), Cambridge University Press, Cambridge, pp. 231–252.

    Google Scholar 

  • Echeverria, E. and Boyer, C.D. (1986) Localization of starch biosynthetic and degradative enzymes in maize leaves. Amer. J. Bot. 73: 167–171.

    Article  CAS  Google Scholar 

  • Echeverria, E., Boyer, C.D., Liu, K.-C. and Shannon, J. (1985) Isolation of amyloplasts from developing maize endosperm. Plant Physiol. 11: 513–519.

    Article  Google Scholar 

  • Echeverria, E., Boyer, C.D., Thomas, P.A., Liu, K.-C. and Shannon, J.C (1988) Enzyme activities associated with maize kernel amyloplasts. Plant Physiol. 86: 786–792.

    Article  PubMed  CAS  Google Scholar 

  • Echt, C.S. and Schwartz, D. (1981) Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics 99: 275–284.

    PubMed  CAS  Google Scholar 

  • Edwards, J. and ap Rees, T. (1986a) Sucrose partitioning in round and wrinkled varieties of Pisum sativum. Phytochem. 25:2027–2032.

    Article  CAS  Google Scholar 

  • Edwards, J. and ap Rees, T. (1986b) Metabolism of UDP-glucose by developing embryos of round and wrinkled varieties of Pisum sativum. Phytochem. 25: 2033–2039.

    Article  CAS  Google Scholar 

  • Edwards, J., Green, J.H. and ap Rees, T. (1988) Activity of branching enzyme as a cardinal feature of the r a locus m Pisum sativum. Phytochem. 27: 1615–1620.

    Article  CAS  Google Scholar 

  • Emes, M.J. and Traska, A. (1987) Uptake of inorganic phosphate by plastids purified from the roots of Pisum sativum L. J. Exp. Bot. 38: 1781–1788.

    Article  CAS  Google Scholar 

  • Entwistle, G. and ap Rees, T. (1988) Enzymic capacities of amyloplasts from wheat (Triticum aestivum) endosperm. Biochem. J. 255: 391–396.

    PubMed  CAS  Google Scholar 

  • Entwistle, G. and ap Rees, T. (1990) Lack of fructose-1,6-bisphosphatase in a range of higher plants that store starch. Biochem. J. 271: 467–472.

    PubMed  CAS  Google Scholar 

  • Evers, A.D. (1971) Scanning electron microscopy of wheat starch. III: Granule development in the endosperm. Stärke 23: 157–162.

    Article  Google Scholar 

  • Evers, A.D. and Lindley, J. (1977) The particle-size distribution in wheat endosperm starch. J. Sci. Food Agric. 28: 98–102.

    Article  Google Scholar 

  • Evers, A.D., Greenwood, C.T., Muir, D.D. and Venables, C. (1974) Studies on the biosynthesis of starch granules. 8: A comparison of the properties of the small and large granules in mature cereal starches. Stärke 26:42–46.

    Article  CAS  Google Scholar 

  • Fergason, V.L., Helm, J.L. and Zuber, M.S. (1966) Gene dosage effects at the ae locus on amylose content of corn endosperm. J. Hered. 57: 90–94.

    Google Scholar 

  • Fliege, R., Flügge, U.-I., Werdan, K. and Heldt, H.W. (1978) Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim. Biophys. Acta 502: 232–247.

    Article  PubMed  CAS  Google Scholar 

  • Flügge, U.-I. and Heldt, H.W. (1984) The phosphate—triose phosphate—phosphoglycerate translocator of the chloroplast. Trends Biochem. Sci. 9: 530–533.

    Article  Google Scholar 

  • Fondy, B.R. and Geiger, D.R. (1985) Diurnal changes in allocation of newly-fixed carbon in exporting sugar beet leaves. Plant Physiol. 78: 753–757.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R.T., Perlak, F.J., Fischhoff, D.A., Turner, N., Stark, D., Barry, G. and Kishore, G. (1991) Improving potato processing and pest control through gene transfer. In Abstracts of 2nd International Potato Molecular Biology Symposium, St Andrews, Scotland, Potato Marketing Board.

    Google Scholar 

  • Frehner, M., Pozueta-Romero, J. and Akazawa, T. (1990) Enzyme sets of glycolysis, gluconeogenesis, and oxidative pentose phosphate pathway are not complete in nongreen highly purified amyloplasts of sycamore (Acer pseudoplatanus L.) cell suspension cultures. Plant Physiol. 94: 538–544.

    Article  PubMed  CAS  Google Scholar 

  • French, D. (1984) Organisation of starch granules. In Starch: Chemistry and Technology (Whistler, R.L., BeMiller, J.N., and Paschall, E.F., eds), Academic Press, Orlando, pp. 183–247.

    Google Scholar 

  • Frydman, R.B. and Cardini, C.E. (1967) Studies on the biosynthesis of starch. II. Some properties of the adenosine diphosphate glucose:starch glucosyltransferase bound to the starch granule. J. Biol. Chem. 242:312–317.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., Tagaya, M., Inoye, M., Preiss, J. and Fukui, T. (1990) Identification of lysine 15 at the active site in Escherichia coli glycogen synthase. J. Biol. Chem. 265:2086–2090.

    PubMed  CAS  Google Scholar 

  • Geddes, R. and Greenwood, C.T. (1969) Observations on the synthesis of the starch granule. Stärke 6: 148–152.

    Article  Google Scholar 

  • Geddes, R., Greenwood, C.T. and Mackenzie, S. (1965) Studies on the biosynthesis of starch granules. III. The properties of the components of starches from the growing potato tuber. Carbohydr. Res. 1: 71–82.

    Article  CAS  Google Scholar 

  • Geiger, D.R., Jablonski, L.M. and Ploeger, B.J. (1985) Significance of carbon allocation to starch in growth of Beta vulgaris L. In Regulation of Carbon Partitioning in Photosynthetic Tissue (Heath, R.L. and Preiss, J., eds), Waverley Press, Baltimore, pp. 289–308.

    Google Scholar 

  • Gerhardt, R. and Heldt, H.W. (1984) Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in non-aqueous media. Plant Physiol. 75: 542–547.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, H.P. and Preiss, J. (1966) Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J. Biol. Chem. 241: 4491–4504.

    PubMed  CAS  Google Scholar 

  • Gidley, M. (1987) Factors affecting the crystalline type (A—C) of native starches and model compounds: a rationalisation of observed effects in terms of polymorphic structures. Carbohydr. Res. 161: 301–304.

    Article  CAS  Google Scholar 

  • Gidley, M.J. and Bociek, S.M. (1985) Molecular organisation in starches: a 13C CP/MAS NMR study. J. Amer. Chem. Soc. 107: 7040–7044.

    Article  CAS  Google Scholar 

  • Gidley, M.J. and Bociek, S.M. (1988) 13C CP/MAS NMR studies of amylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules. J. Amer. Chem. Soc. 110: 3820–3829.

    Article  CAS  Google Scholar 

  • Gidley, M. and Bulpin, P.V. (1987) Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices. Carbohydr. Res. 161: 291–300.

    Article  CAS  Google Scholar 

  • Goodman, R.N., Ziraly, Z. and Wood, K.R. (1986) The Biochemistry and Physiology of Plant Disease. University of Missouri Press, Columbia, Missouri.

    Google Scholar 

  • Gould, J.M. and Winget, G.D. (1973) A membrane-bound alkaline inorganic pyrophosphatase in isolated spinach chloroplasts. Arch. Biochem. Biophys. 154: 606–613.

    Article  PubMed  CAS  Google Scholar 

  • Gross, P. and ap Rees, T. (1986) Alkaline inorganic pyrophosphatase and starch synthesis in amyloplasts. Planta 167: 140–145.

    Article  CAS  Google Scholar 

  • Guilbot, A. and Mercier, C. (1985) Starch. In The Polysaccharides, Vol. 3 (Aspinall, G.O., ed.), Academic Press, London, pp. 209–282.

    Google Scholar 

  • Hannah, L.C. and Nelson, O.E. (1976) Characterisation of ADP-glucose pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize. Biochem. Genet. 14: 547–560.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, K.R. and McHale, N.A. (1988) A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol. 88: 838–844.

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves, J. A. and ap Rees, T. (1988) Turnover of starch and sucrose in roots of Pisum sativum. Phytochem. 27: 1627–1629.

    Article  CAS  Google Scholar 

  • Harrison, S.G., Masefield, G.B. and Wallis, M. (1969) The Oxford Book of Food Plants. Oxford University Press, Oxford.

    Google Scholar 

  • Hatzfield, W.-D. and Stitt, M. (1990) A study of the rate of recycling of triose phosphates in heterotrophic Chenopodium rubrum cells, potato tubers, and maize endosperm. Planta 180: 198–204.

    Google Scholar 

  • Hawker, J.S. and Downton, W.J.S. (1974) Starch synthetases from Vitis vinifera and Zea mays. Phytochem. 13: 893–900.

    Article  CAS  Google Scholar 

  • Hawker, J.S., Ozbun, J.L. and Preiss, J. (1972) Unprimed starch synthesis by soluble ADPglucose-starch glucosyltransferase from potato tubers. Phytochem. 11: 1287–1293.

    Article  CAS  Google Scholar 

  • Hawker, J.S., Ozbun, J.L., Ozaki, H., Greenberg, E. and Preiss, J. (1974) Interaction of spinach leafadenosine diphosphate glucose α-l,4-glucan α-4-glucosyl transferase and α-l-glucan, α-1,4-glucan-6-glycosyl transferase in synthesis of branched α-glucan. Arch. Biochem. Biophys. 160: 530–551.

    Article  PubMed  CAS  Google Scholar 

  • Hawker, J.S., Marschner, H. and Krauss, A. (1979) Starch synthesis in developing potato tubers. Physiol. Plant. 46: 25–30.

    Article  CAS  Google Scholar 

  • Hedman, K.D. and Boyer, C.D. (1982) Gene dosage at the amylose-extender locus of maize: effects on the levels of starch-branching enzymes. Biochem. Genet. 20: 483–492.

    Article  PubMed  CAS  Google Scholar 

  • Hedman, K.D. and Boyer, C.D. (1983) Allelic studies of the amylose-extender locus of Zea mays L.: levels of the starch branching enzymes. Biochem. Genet. 21:1217–1222.

    Article  PubMed  CAS  Google Scholar 

  • Heldt, H.W. and Rapley, L. (1970) Unspecific permeation and specific uptake of substances in spinach chloroplasts. FEBS Lett. 7: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Hill, L.M. and Smith, A.M. (1991) Evidence that glucose 6-phosphate is imported as the substrate for starch synthesis by the plastids of developing pea embryos. Planta 185: 91–96.

    CAS  Google Scholar 

  • Hizukuri, S., Takeda, Y., Yasuda, M. and Suzuki, A. (1981) Multi-branched nature of amylose and the action of debranching enzyme. Carbohydr. Res. 94: 205–213.

    Article  CAS  Google Scholar 

  • Hizukuri, S., Kaneko, T. and Takeda, Y. (1983) Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules. Biochim. Biophys. Acta 760: 188–191.

    Article  CAS  Google Scholar 

  • Hovenkamp-Hermelink, J.H.M., Jacobsen, E., Ponstein, A.S., Visser, R.G.F., Vos-Scheperkeuter, G.H., Bijmolt, E.W., de Vries, J.N., Witholt, B. and Feenstra, W.J. (1987) Isolation of an amylose-free starch mutant of the potato (Solanum tuberosum L.). Theor. Appl. Genet. 57: 217–221.

    Google Scholar 

  • Hsieh, J.-S. (1988) Genetic studies on the Wx gene of sorghum [Sorghum bicolor (L.) Moench.] I. Examination of the protein product of the waxy locus. Bot. Bull. Academia Sinica 29: 293–299.

    CAS  Google Scholar 

  • Huber, S.C., Kerr, P.S. and Kalt-Torres, W. (1985) Regulation of sucrose formation and movement. In Regulation of Carbon Partitioning in Photosynthetic Tissue (Heath, R.L. and Preiss, J., eds), Waverley Press, Baltimore, pp. 199–214.

    Google Scholar 

  • Jacobsen, E., Hovenkamp-Hermelink, J.M.H., Krigsheld, H.T., Nijdam, H., Pijnacker, L.P., Witholt, B. and Feenstra, W.J. (1989) Phenotypic and genotypic characterisation of an amylose-free starch mutant of the potato. Euphytica 44: 43–48.

    Article  Google Scholar 

  • Jenner, C. (1976) Wheat grains and spinach leaves as accumulators of starch. In Transport and Transfer Processes in Plants (Wardlaw, I. and Passioura, J.B., eds), Academic Press, New York, pp. 77–83.

    Google Scholar 

  • Jenner, C. (1982) Storage of starch. In Encyclopedia of Plant Physiology New Series Vol. 13 A: Plant carbohydrates II, Intracellular carbohydrates. (Loewus, F.A. and Tanner, W., eds), Springer-Verlag, Berlin, pp. 700–747.

    Google Scholar 

  • Jones, G. and Whelan, W.J. (1969) The action pattern of D-enzyme, a transmaltodextrinylase from potato. Carbohydr. Res. 9: 483–90.

    Article  CAS  Google Scholar 

  • Jones, T.W. A., Pichersky, E. and Gottlieb, L.D. (1986) Enzyme activity in EMS-induced null mutations of duplicated genes encoding phosphoglucose isomerase in Clarkia. Genetics 113: 101–114.

    PubMed  CAS  Google Scholar 

  • Journet, E.P. and Douce, R. (1985) Enzymic capacities of purified cauliflower bud plastids for lipid symthesis and carbohydrate metabolism. Plant Physiol. 79: 458–67.

    Article  PubMed  CAS  Google Scholar 

  • Kainuma, K. (1988) Structure and chemistry of the starch granule. In The Biochemistry of Plants, Vol. 14: Carbohydrates (Preiss, J., ed.), Academic Press, San Diego, pp. 141–180.

    Google Scholar 

  • Kakefuda, G., Duke, S.H. and Hostak, M.S. (1986) Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum L. Planta 168: 175–182.

    CAS  Google Scholar 

  • Kassenbeck, P. (1978) Beitrag zur Kenntnis der Verteilung von Amylose und Amylopektin in Stärkekörnern. Stärke 30: 40–46.

    Article  CAS  Google Scholar 

  • Keeling, P.L., Wood, J.R., Tyson, R.W. and Bridges, I.G. (1988) Starch biosynthesis in developing wheat grain. Evidence against the direct involvement of triose phosphates in the metabolic pathway. Plant Physiol. 78:311–319.

    Article  Google Scholar 

  • Kirk, R.T.O. and Tilney-Basset, R.A.E. (1967) The Plastids. W.H. Freeman and Co., London.

    Google Scholar 

  • Kiss, J.Z. and Sack, F.D. (1990) Severely reduced gravitropism in dark-grown hypocotyls of a starch-deficient mutant of Nicotiana sylvestris. Plant Physiol. 94: 1867–1873.

    Article  PubMed  CAS  Google Scholar 

  • Kiss, J.Z., Hertel, R. and Sack, F.D. (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177: 198–206.

    Article  PubMed  CAS  Google Scholar 

  • Klösgen, R.B., Gierl, A., Schwarz-Sommer, Z. and Saedler, H. (1986) Molecular analysis of the waxy locus of Zea mays. Mol. Gen. Genet. 203: 237–244.

    Article  Google Scholar 

  • Knee, M., Sargent, J.A. and Osborne, D.J. (1977) Cell wall metabolism in developing strawberry fruits. J. Exp. Bot. 28: 377–396.

    Article  CAS  Google Scholar 

  • Krauss, A. and Marschner, H. (1984) Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. Potato Res. 27: 297–303.

    Article  CAS  Google Scholar 

  • Krishnan, H.B., Reeves, C.D. and Okita, T.W. (1986) ADPglucose pyrophosphorylase is encoded by different transcripts in leaf and endosperm of cereals. Plant Physiol. 81: 642–645.

    Article  PubMed  CAS  Google Scholar 

  • Kruckeberg, A.L., Neuhaus, H.E., Feil, R., Gottlieb, L.D. and Stitt, M. (1989) Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. I. Impact on mass action ratios and fluxes to sucrose and starch, and estimation of flux control coefficients and elasticity coefficients. Biochem. J. 261: 457–167.

    PubMed  CAS  Google Scholar 

  • Kruger, N.J., Bulpin, P.V. and ap Rees, T. (1983) The extent of starch degradation in the light in pea leaves. Planta 157: 271–273.

    Article  Google Scholar 

  • Kumar, A., Larsen, C.E. and Preiss, J. (1986) Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADP-glucose: α-1,4-glucan, 4-glucosyltransferase as deduced from the nucleotide sequence of the glgA gene. J. Biol. Chem. 261: 16256–16259.

    PubMed  CAS  Google Scholar 

  • Laetsch, W.M. (1968) Chloroplast specialisation in dicotyledons possessing the C4-dicarboxylic acid pathway of photosynthetic CO2 fixation. Amer. J. Bot. 55: 875–883.

    Article  CAS  Google Scholar 

  • Leech, R.M. and Baker, N.R. (1983) The development of photosynthetic capacity in leaves. In The Growth and Functioning of Leaves (Dale, J.E. and Milthorpe, F.L., eds), Cambridge University Press, Cambridge, pp. 273–307.

    Google Scholar 

  • van der Leij, F.R., Visser, R.G.F., Ponstein, A.S., Jacobsen, E. and Feenstra, W.J. (1991a) Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence for a single point deletion in the amf allele. Mol. Gen. Genet. 228: 240–248.

    Article  PubMed  Google Scholar 

  • van der Leij, F.R., Visser, R.G.F., Oosterhaven, K., van der Kop, D.A.M., Jacobsen, E. and Feenstra, W.J. (1991b) Complementation of the amylose-free starch mutant of potato (Solanum tuberosum L.) by the gene encoding granule-bound starch synthase. Theor. Appl. Genet.: in press.

    Google Scholar 

  • Lewis, D.H. (1984) Occurrence and distribution of storage carbohydrates. In Storage Carbohydrates in Vascular Plants (Lewis, D.H. ed.) Cambridge University Press, Cambridge, pp. 1–54.

    Google Scholar 

  • Liedvogel, B. and Kleinig, H. (1980) Phosphate translocator and adenylate translocation in chromoplast membranes. Planta 150: 170–173.

    Article  CAS  Google Scholar 

  • Lin, T.-P. and Preiss, J. (1988) Characterisation of D-enzyme (4-α-glucanotransferase) in Arabidopsis leaf. Plant Physiol. 86: 260–265.

    Article  PubMed  CAS  Google Scholar 

  • Lin, T.-P., Caspar, T., Somerville, C.R. and Preiss, J. (1988a) Isolation and characterisation of a starchless mutant of Arabidopsis thaliana (L.) Heynh. lacking ADPglucose pyrophosphorylase activity. Plant Physiol 86:1131–1135.

    Article  PubMed  CAS  Google Scholar 

  • Lin, T.-P., Caspar, T., Somerville, C.R. and Preiss, J. (1988b) A starch-deficient mutant of Arabidopsis with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88: 1175–1181.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, F.D. and ap Rees, T. (1983) Enzymic properties of amyloplasts from suspension cultures of soybean. Biochim. Biophys. Acta 755: 81–89.

    Article  CAS  Google Scholar 

  • Macdonald, F.D. and Preiss, J. (1983) Solubilisation of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol. 73: 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, F.D. and Preiss, J. (1985) Partial purification and characterisation of granule-bound starch synthases from normal and waxy maize. Plant Physiol. 78: 849–852.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, A.L.M., Stark, J.R., Morrison, W.R. and Ellis, R.P. (1991) The composition of starch granules from developing barley genotypes. J. Cereal Sci. 13: 93–112.

    Article  CAS  Google Scholar 

  • Manners, D.J. (1985) Starch. In Biochemistry of Storage Carbohydrates in Green Plants (Dey, P.M. and Dixon, R.A., eds), Academic Press, London, pp. 149–203.

    Google Scholar 

  • Manners, D.J. and Matheson, N.K. (1981) The fine structure of amylopectin. Carbohydr. Res. 90: 99–110.

    Article  CAS  Google Scholar 

  • Mares, D.J., Hawker, J.S. and Possingham, J.V. (1978) Starch synthesising enzymes in developing leaves of spinach (Spinacia oleracea L.) J. Exp. Bot. 29: 829–835.

    Article  CAS  Google Scholar 

  • Marschner, H. (1986) Mineral Nutrition of Higher Plants. Academic Press, London.

    Google Scholar 

  • Matheson, N.K. and Wheatley, J.M. (1962) Starch changes in developing and senescing tobacco leaves. Aust. J. Biol. Sci. 15:445–458.

    CAS  Google Scholar 

  • Matters, G.L. and Boyer, C.D. (1981) Starch synthases and starch-branching enzymes from Pisum sativum. Phytochem. 20: 1805–1809.

    Article  CAS  Google Scholar 

  • May, L.H. and Buttrose, M.S. (1959) Physiology of cereal grain. II: Starch granule formation in the developing barley kernel. Aust. J. Biol. Sci. 12: 146–159.

    CAS  Google Scholar 

  • Meeuse, B.J.D. (1975) Thermogenic respiration in Aroids. Annu. Rev. Plant Physiol. 26: 117–126.

    Article  CAS  Google Scholar 

  • Mohabir, G. and John, P. (1988) Effect of temperature on starch synthesis in potato tuber tissue and amyloplasts. Plant Physiol. 88: 1222–1228.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. and Evans, M.L. (1986) How roots perceive and respond to gravity. Amer. J. Bot. 73: 574–587.

    Article  CAS  Google Scholar 

  • Morell, M.K., Bloom, M. and Preiss, J. (1987) Subunit structure of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol. 85: 185–187.

    Article  Google Scholar 

  • Morell, M.K., Bloom, M. and Preiss, J. (1988) Affinity labelling of the allosteric activator site(s) of spinach leaf ADPglucose pyrophosphorylase. J. Biol. Chem. 263: 633–637.

    PubMed  CAS  Google Scholar 

  • Morrell, S. and ap Rees, T. (1986) Sugar metabolism in developing tubers of Solanum tuberosum. Phytochem. 25: 1579–1585.

    Article  CAS  Google Scholar 

  • Morrison, W.R. and Gadan, H. (1987) The amylose and lipid contents of starch granules in developing wheat endosperm. J. Cereal Sci. 5: 263–275.

    Article  CAS  Google Scholar 

  • Morrison, W.R., Milligan, T.P. and Azudin, M.N. (1984) A relationship between the amylose and lipid contents of starches from diploid cereals. J. Cereal Sci. 2: 257–271.

    Article  CAS  Google Scholar 

  • Müller-Röber, B.T., Kossman, J., Hannah, L.C., Willmitzer, L. and Sonnenwald, U. (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Molec. Gen. Genet. 224: 136–146.

    PubMed  Google Scholar 

  • Nakamura, Y., Yuki, K., Park, S.Y. and Ohya, T. (1989) Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol. 30: 833–839.

    CAS  Google Scholar 

  • Nelson, O.E. and Rines, H.W. (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Commun. 9: 297–300.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, O.E., Chourey, P.S. and Chang, M.T. (1978) Nucleotide diphosphate sugar-starch glucosyl transferase activity of wx starch granules. Plant Physiol 72: 383–386.

    Article  Google Scholar 

  • Neuhaus, H.E. and Stitt, M. (1990) Control analysis in photosynthetic partitioning. Impact of reduced activity of ADP-glucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana (L.) Heynh. Planta 182: 445–454.

    Article  CAS  Google Scholar 

  • Ngernprasirtsiri, J., Harinasut, P., Macherel, D., Strzalka, K., Takabe, T., Akazawa, T. and Kojima, J. (1988) Isolation and characterisation of the amyloplast envelope-membrane from cultured white-wild cells of sycamore (Acer pseudoplatanua L.). Plant Physiol. 87: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Ngernprasirtsiri, J., Takabe, T. and Akazawa, T. (1989) Immunochemical analysis shows that an ATP/ADP translocator is associated with the inner-envelope membranes of amyloplasts from Acer pseudoplatanus L. Plant Physiol. 89: 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  • Norton, G. and Harris, J.F. (1975) Compositional changes in developing rape seed (Brassica napus L.). Planta 123: 163–174.

    Article  CAS  Google Scholar 

  • Okita, T.W. and Preiss, J. (1980) Starch degradation in spinach leaves. Plant Physiol. 66: 870–876.

    Article  PubMed  CAS  Google Scholar 

  • Okita, T.W., Greenberg, E., Kuhn, D.N. and Preiss, J. (1979) Subcellular localisation of the starch degradative and biosynthetic enzymes of spinach leaves. Plant Physiol. 64: 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Okita, T.W., Nakata, P.A., Anderson, J.M., Sowokinos, J., Morell, M. and Preiss, J. (1990) The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol. 93: 785–790.

    Article  PubMed  CAS  Google Scholar 

  • Okuno, K. and Sakaguchi, S. (1982) Inheritance of starch characteristics in perisperm of Amaranthus hypochondriacus. J. Hered. 73: 467.

    Google Scholar 

  • Olive, M.R., Ellis, J.R. and Schuch, W.W. (1989) Isolation and nucleotide sequences of cDNA clones encoding ADP-glucose pyrophosphorylase polypeptides from wheat leaf and endosperm. Plant Molec. Biol. 12: 525–538.

    Article  CAS  Google Scholar 

  • Oparka, K. and Wright, K.M. (1988a) Osmotic regulation of starch synthesis in potato tubers? Planta 174: 123–126.

    Article  CAS  Google Scholar 

  • Oparka, K. and Wright, K.M. (1988b) Influence of cell turgor on sucrose partitioning in potato tuber storage tissues. Planta 175: 520–526.

    Google Scholar 

  • Outlaw, J.L. and Manchester, J. (1979) Guard cell starch concentration quantitatively related to stomatal aperture. Plant Physiol. 64: 79–82.

    Article  PubMed  CAS  Google Scholar 

  • Ozbun, J.L., Hawker, J.S. and Preiss, J. (1971a) Adenosine diphosphoglucose-starch glucosyltransferases from developing kernels of waxy maize. Plant Physiol. 48: 765–769.

    Article  PubMed  CAS  Google Scholar 

  • Ozbun, J.L., Hawker, J.S. and Preiss, J. (197lb) Multiple forms of a-1,4 glucan synthetase from spinach leaves. Biochem. Biophys. Res. Commun. 43: 631–636.

    Article  Google Scholar 

  • Ozbun, J.L., Hawker, J.S., Greenberg, E., Lammel, C., Preiss, J. and Lee, E.Y.C. (1973) Starch synthetase, Phosphorylase, ADPglucose pyrophosphorylase, and UDPglucose pyrophosphorylase in developing maize kernels. Plant Physiol. 51: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Pan, D. and Nelson, O.E. (1984) A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize. Plant Physiol. 74: 324–328.

    Article  PubMed  CAS  Google Scholar 

  • Pisigan, R.A. and del Rosario, E.J. (1976) Isoenzymes of soluble starch synthetase from Oryza sativa grains. Phytochem. 15: 71–73.

    Article  CAS  Google Scholar 

  • Plaxton, W.C. and Preiss, J. (1987) Purification and properties of nonproteolytic degraded ADPglucose pyrophosphorylase from maize endosperm. Plant Physiol. 83: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, C. and Chatterton, N.J. (1988) Fructans. In The Biochemistry of Plants, Vol. 14: Carbohydrates (Preiss, J., ed.), Academic Press, San Diego, pp. 109–140.

    Google Scholar 

  • Pollock, C.J. and Preiss, J. (1980) The citrate-stimulated starch synthase of starchy maize kernels: purification and properties. Arch. Biochem. Biophys. 204: 578–588.

    Article  PubMed  CAS  Google Scholar 

  • Ponstein, A. (1990) Starch synthesis in potato tubers. Ph.D. thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Pozueta-Romero, J., Frehner, M., Viale, A.M. and Akazawa, T. (1991) Direct transport of ADPglucose by an adenylate translocator is linked to starch biosynthesis in amyloplasts. Proc. Natl Acad. Sci. 88: 5769–5773.

    Article  PubMed  CAS  Google Scholar 

  • Preiss, J. (1984) Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38: 419–458.

    Article  PubMed  CAS  Google Scholar 

  • Preiss, J. (1988) Biosynthesis of starch and its regulation. In The Biochemistry of Plants, Vol. 14: Carbohydrates (Preiss, J., ed.), Academic Press, San Diego, pp. 181–254.

    Google Scholar 

  • Preiss, J. (1990) Biology and molecular biology of starch synthesis and its regulation. In Oxford Surveys of Plant Molecular and Cell Biology Vol. 7 (Miflin, B.J. ed.) Oxford University Press, Oxford.

    Google Scholar 

  • Preiss, J. and Levi, C. (1979) Metabolism of starch in leaves. In Encyclopedia of Plant Physiology New Series Vol. 6: Photosynthesis II (Gibbs, M. and Latzko, E., eds), Springer Verlag, Berlin, pp. 282–312.

    Google Scholar 

  • Preiss, J. and Levi, C. (1982) Starch biosynthesis and degradation. In The Biochemistry of Plants Vol. 3: Carbohydrates: structure and function (Preiss, J., ed.), Academic Press, San Diego, pp. 371–423.

    Google Scholar 

  • Preiss, J., Cress, D., Hutny, J., Morell, M., Bloom, M., Okita, T. and Anderson, J. (1989) Regulation of starch synthesis. Biochemical and genetic studies. In Biocatalysis in Agricultural Biotechnology (Whitaker, J.R. and Sonnet, P.E., eds), American Chemical Society, Washington, pp. 84–92.

    Chapter  Google Scholar 

  • Preiss, J., Danner, S., Summers, P.S., Morell, M., Barton, C.R., Yang, L. and Nieder, M. (1990) Molecular characterisation of the brittle-2 gene effect on maize endosperm ADPglucose pyrophosphorylase subunits. Plant Physiol. 93: 785–790.

    Article  PubMed  Google Scholar 

  • Priestley, C.A. (1970) Carbohydrate storage and utilisation. In Physiology of Tree Crops (Luckwill, L.C and Cutting, C.V., eds), Academic Press, London, pp. 113–127.

    Google Scholar 

  • Rest, J.A. and Vaughan, J.G. (1972) The development of protein and oil bodies in the seed of Sinapis alba L. Planta 105: 245–262.

    Article  Google Scholar 

  • Rijven, A.H.G.C. (1986) Heat inactivation of starch synthase in wheat endosperm. Plant Physiol. 81: 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Robyt, J. (1984) Enzymes in the synthesis and hydrolysis of starch. In Starch: Chemistry and Technology (Whistler, R.L., BeMiller, J.N. and Paschall, E.F., eds), Academic Press, Orlando, pp. 87–123.

    Google Scholar 

  • Rocha-Sosa, M., Sonnenwald, U., Frommer, W., Stratmann, M., Schell, J. and Willmitzer, L. (1989) Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 8, 23–29.

    PubMed  CAS  Google Scholar 

  • Rohde, W., Becker, D. and Salamini, F. (1988) Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Res. 16: 7185–7186.

    Article  PubMed  CAS  Google Scholar 

  • Saether, N. and Iversen, T.-H. (1991) Gravitropism and starch statoliths in an Arabidopsis mutant. Planta 184: 491–197.

    Article  PubMed  CAS  Google Scholar 

  • Salema, K. and Badenhuizen, N.P. (1967) The production of reserve starch granules in the amyloplasts of Pellionia daveauana N. E. Br. J. Ultrastr. Res. 30: 383–399.

    Article  Google Scholar 

  • Sano, Y. (1984) Differential regulation of waxy gene expression in rice endosperm. Theor. Appl. Genet. 68: 467–473.

    Article  CAS  Google Scholar 

  • Sanwal, G.G., Greenberg, E., Hardie, J., Cameron, E.C and Preiss, J. (1968) Regulation of starch biosynthesis in plant leaves: activation and inhibition of ADPglucose pyrophosphorylase. Plant Physiol. 43: 417–427.

    Article  PubMed  CAS  Google Scholar 

  • Schiefer, S., Lee, E.Y.C. and Whelan, W.J. (1978) The requirement for a primer in the in vitro synthesis of polysaccharide by sweet-corn (l,4)-α- D-glucan synthase. Carbohydr. Res. 61: 239–252.

    Article  CAS  Google Scholar 

  • Schulman, A.H. and Ahokas, H. (1990) A novel shrunken endosperm mutant of barley. Physiol. Plant. 78: 583–589.

    Article  CAS  Google Scholar 

  • Schwartz, D. and Echt, C.S. (1982) The effect of Ac dosage on the production of multiple forms of Wx protein by the wx m−9 controlling element mutation in maize. Mol. Gen. Genet. 187:410–413.

    Article  CAS  Google Scholar 

  • Sculthorpe, C.D. (1967) The Biology of Aquatic Vascular Plants. William Clowes and Sons Ltd., London.

    Google Scholar 

  • Shannon, J.C and Garwood, D.L. (1984) Genetics and physiology of starch development. In Starch: Chemistry and Technology (Whistler, R.L., BeMiller, J.N. and Paschall, E.F., eds), Academic Press, Orlando, pp. 25–86.

    Google Scholar 

  • Shannon, J.C, Creech, R.G. and Loerch, J.D. (1970) Starch synthesis studies in Zea mays. II Molecular distribution of radioactivity in starch. Plant Physiol. 45: 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Shewmaker, C.K., Oakes, J.V., Stalker, D.M. and Boersig, M. (1991) Production of novel carbohydrate in potato tubers. In Abstracts of 2nd International Potato Molecular Biology Symposium, St Andrews, Scotland, Potato Marketing Board.

    Google Scholar 

  • Shure, M., Wessler, S. and Fedoroff, N. (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35: 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B.K. and Preiss, J. (1985) Starch-branching enzymes from maize. Immunological characterisation using polyclonal and monoclonal antibodies. Plant Physiol. 79: 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A.M. (1988) Major differences in isoforms of starch-branching enzyme between developing embryos of round- and wrinkled-seeded peas (Pisum sativum L.). Planta 175: 270–279.

    Article  CAS  Google Scholar 

  • Smith A.M., (1990a) Evidence that the waxy protein of pea (Pisum sativum L.) is not the major starch-granule-bound starch synthase. Planta 182: 599–604.

    Article  CAS  Google Scholar 

  • Smith, A.M. (1990b) Enzymes of starch synthesis. In Methods in Plant Biochemistry Vol. 3: Enzymes of primary metabolism (Lea, P.J., ed), Academic Press, London, pp. 93–102.

    Google Scholar 

  • Smith, A.M., Bettey, M. and Bedford, I.D. (1989) Evidence that the rb locus alters the starch content of developing pea embryos through an effect on ADP glucose pyrophosphorylase. Plant Physiol. 89: 1279–1284.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A.M., Quinton-Tulloch, J. and Denyer, K. (1990a) Characteristics of plastids responsible for starch synthesis in developing pea embryos. Planta 180: 517–523.

    Article  CAS  Google Scholar 

  • Smith, A.M., Neuhaus, H.E. and Stitt, M. (1990b) The impact of decreased activity of starch-branching enzyme on photosynthetic starch synthesis in leaves of wrinkled-seeded peas. Planta 181: 310–135.

    Article  CAS  Google Scholar 

  • Smyth, D.A. (1988) Some properties of starch-branching enzyme from Indica rice. Plant Sci. 57: 1–8.

    Article  CAS  Google Scholar 

  • Spiltrano, S.R. and Preiss, J. (1987) Regulation of starch synthesis in the bundle sheath and mesophyll of Zea mays L. Plant Physiol. 83: 621–627.

    Article  Google Scholar 

  • Sowokinos, J. (1976) Pyrophosphorylases in Solanum tuberosum. I. Changes in ADP-glucose and UDP-glucose pyrophosphorylase activities associated with starch biosynthesis during tuberisation, maturation, and storage of potatoes. Plant Physiol. 57: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Sowokinos, J.R. and Preiss, J. (1982) Pyrophosphorylases in Solanum tuberosum. III Purification, physical and catalytic properties of ADPglucose pyrophosphorylase in potatoes. Plant Physiol. 69: 1459–1466.

    Article  PubMed  CAS  Google Scholar 

  • Steup, M. (1988) Starch degradation. In The Biochemistry of Plants, Vol 14: Carbohydrates (Preiss, J., ed.), Academic Press, San Diego, pp. 255–296.

    Google Scholar 

  • Steup, M., Robenek, H. and Melkonian, M. (1983) In vitro degradation of starch granules isolated from chloroplasts. Planta 158: 428–436.

    Article  CAS  Google Scholar 

  • Stitt, M. (1985) Fine control of sucrose synthesis by fructose-2,6-bisphosphate. In Regulation of Carbon Partitioning in Photosynthetic Tissue (Heath, R.L. and Preiss, J., eds), Waverley Press, Baltimore, pp.109–126.

    Google Scholar 

  • Stitt, M. (1990) Fructose-2,6-bisphosphate as a regulatory molecule in plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 41: 153–185.

    Article  CAS  Google Scholar 

  • Stitt, M. and Quick, W.P. (1989) Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiol.Plant. 11: 633–641.

    Article  Google Scholar 

  • Stitt, M. and Steup, M. (1985) Starch and sucrose degradation. In Encyclopedia of Plant Physiology New Series Vol. 18: Higher plant cell respiration (Douce, R. and Day, D.A., eds) Springer Verlag, Berlin, pp. 347–390.

    Google Scholar 

  • Stitt, M., Bulpin, P.V. and ap Rees, T. (1978) Pathway of starch breakdown in photosynthetic tissues of Pisum sativum. Biochim. Biophys. Acta 544: 200–214.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M., Huber, S. and Kerr, P. (1987) Control of photosynthetic sucrose formation. In The Biochemistry of Plants Vol. 10 Photosynthesis (Hatch, M.D. and Boardman, N.K., eds), Academic Press, San Diego, pp. 327–409.

    Google Scholar 

  • Sumner, J.B. and Somers, G.F. (1944) The water-soluble polysaccharides of sweet corn. Arch. Biochem. 4: 7–9.

    CAS  Google Scholar 

  • Takeda, Y. and Hizukuri, S. (1982) Location of phosphate groups in potato amylopectin. Carbohydr. Res. 102:312–327.

    Article  Google Scholar 

  • Torres, N.U., Mateo, F., Melendez-Hevia, E. and Kacser, H. (1986) Kinetics of metabolic pathways. A system in vivo to study the control of flux. Biochem. J. 234: 169–174.

    PubMed  CAS  Google Scholar 

  • Tsai, C.-Y. (1974) The function of the waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 11: 83–96.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, C.-Y., Salamini, F. and Nelson, O.E. (1970) Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol. 46: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Tsay, J.S. and Kuo, C.G. (1980) Enzymatic activities of starch synthesis in potato tubers of different sizes. Physiol. Plant. 48: 460–462.

    Article  CAS  Google Scholar 

  • Tsay, C.S., Kuo, W.L. and Kuo, C.G. (1983) Enzymes involved in starch synthesis in the developing mung bean seed. Phytochem. 22: 1573–1576.

    Article  CAS  Google Scholar 

  • Tucker, G.A. and Grierson, D. (1987) Fruit ripening. In The Biochemistry of Plants, Vol. 12: Physiology of Metabolism (Davies, D.D., ed.), Academic Press, San Diego, pp. 265–318.

    Google Scholar 

  • Turner, J.F. (1969) Starch synthesis and changes in uridine diphosphate glucose pyrophosphorylase and adenosine diphosphate glucose pyrophosphorylase in the developing wheat grain. Aust. J. Biol. Sci. 22:1321–1327.

    CAS  Google Scholar 

  • Turner, S.R., Barratt, D.H.P. and Casey, R. (1990) The effect of different alleles at the r locus on the synthesis of seed storage proteins in Pisum sativum. Plant Molec. Biol. 14: 793–803.

    Article  CAS  Google Scholar 

  • Tyson, R.H. and ap Rees, T. (1988) Starch synthesis by isolated amyloplasts from wheat endosperm. Planta 175: 33–38.

    Article  CAS  Google Scholar 

  • Viola, R., Davies, H.V. and Chudek, A.R. (1991) Pathways of starch and sucrose biosynthesis in developing tubers of potato (Solanum tuberosum L.) and seeds of Faba bean (Vicia faba L.). Planta 183:202–208.

    Article  CAS  Google Scholar 

  • Visser, R.G.F., Hergersberg, M., van der Leij, F.R., Jacobsen, E., Witholt, B. and Feenstra, W.J. (1989) Molecular cloning and partial characterisation of the gene for granule-bound starch synthase from a wildtype and an amylose-free potato (Solanum tuberosum L.) Plant Sci. 64: 185–192.

    Article  CAS  Google Scholar 

  • Visser, R.G.F., Somhorst, I., Kuipers, G.J., Ruys, N.J., Feenstra, W.J. and Jacobsen, E. (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol. Gen. Genet. 225: 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Vos-Seheperkeuter, G.H., de Boer, W., Visser, R.G.F., Feenstra, W.J. and Witholt, B. (1986) Identification of granule-bound starch synthase in potato tubers. Plant Physiol. 82:411–416.

    Article  Google Scholar 

  • Vos-Scheperkeuter, G.H., de Wit, J.G., Ponstein, A.S., Feenstra, W.J. and Witholt, B. (1989) Immunological comparison of the starch-branching enzymes from potato tubers and maize kernels. Plant Physiol. 90: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T.L. and Hedley, C. (1991) Seed development in peas: knowing your three ‘r’ s (or four, or five). Seed Sci. Res. 1: 3–14.

    Article  Google Scholar 

  • Wang, Z., Wu, Z., Xing, Y., Zheng, F., Guo, X., Zang, W. and Hong, M. (1990) Nucleotide sequence of the rice waxy gene. Nucleic Acids Res. 18: 5898.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, H., Stitt, M. and Heidt, H.W. (1987) Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim. Biophys. Acta 893: 13–21.

    Article  CAS  Google Scholar 

  • Wessler, S.R., Baran, B., Varagona, M. and Deilaporta, S.L. (1986) Excision of Ds produces waxy proteins with a range of enzymatic activities. EMBO J. 5: 2427–2432.

    PubMed  CAS  Google Scholar 

  • Yazdi-Samadi, B., Rinne, R.W. and Seif, R.D. (1977) Components of developing soybean seeds: oil, protein, sugars, starch, organic acids and amino acids. Agron. J. 69:481–486.

    Article  CAS  Google Scholar 

  • Yeh, J.Y., Garwood, D.L. and Shannon, J.C. (1981) Characterisation of starch from maize endosperm mutants. Stärke 33: 222–230.

    Article  CAS  Google Scholar 

  • Ziegler, P. (1988) Partial purification and characterisation of the major endoamylase of mature pea leaves. Plant Physiol. 86: 659–666.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smith, A.M., Martin, C. (1993). Starch biosynthesis and the potential for its manipulation. In: Grierson, D. (eds) Biosynthesis and Manipulation of Plant Products. Plant Biotechnology Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2142-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2142-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4949-8

  • Online ISBN: 978-94-011-2142-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics