Skip to main content

Coaction between pigment systems

  • Chapter
Photomorphogenesis in Plants

Abstract

All life on earth is fuelled by sunlight. In order to efficiently harvest the light quanta by the process of photosynthesis, plants must adapt to the light conditions of their particular habitat. In fact, development of photoautotrophic higher plants is ‘opportunistic’ in the sense that the developmental process is in part controlled by light. It is only the basic developmental patterns of plant construction which are strictly determined by the genes; within these limits fine tuning of developmental events is controlled by the actual light climate at the site where the plant has to grow (Mohr 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Mohr H. (1980). Interaction between blue light and phytochrome in photomorphogenesis. In: The Blue Light Syndrome, pp. 97–118, Senger H. (ed.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Mohr H. (1984) Criteria for photoreceptor involvement. In: Techniques in Photomorphogenesis, pp. 13–42, Smith H. and Holmes M.G. (eds.) Academic Press, London.

    Google Scholar 

  • Mohr H. and Drumm-Herrel H. (1983) Coaction between phytochrome and blue/UV light in anthocyanin synthesis in seedlings. Physiol. Plant. 58:408–414.

    Article  CAS  Google Scholar 

  • Mohr H., Drumm-Herrel H. and Oelmüller R. (1984) Coaction of phytochrome and blue/UV light photoreceptors. In: Blue Light Effects in Biological Systems, pp. 6–19, Senger H. (ed.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Schäfer E. and Haupt W. (1983) Blue-light effects in phytochrome-mediated responses. In: Encyclopedia of Plant Physiology, New Series, Vol. 16B, Photomorphogenesis, pp. 723–744, Shropshire Jr. W. and Mohr H. (eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Woitzik F. and Mohr H. (1988a) Control of hypocotyl phototropism by phytochrome in a dicotyledonous seedling (Sesamum indicum L.). Plant Cell Environ. 11: 653–661.

    Article  CAS  Google Scholar 

References

  • Adamse P., Kendrick R.E. and Koornneef M. (1988a) Photomorphogenetic mutants of higher plants. Photochem. Photobiol. 48: 833–841.

    Article  CAS  Google Scholar 

  • Adamse P., Jaspers P.A.P.M., Bakker J.A., Wesselius J.C., Heeringa G.H., Kendrick R.E., Koornneef M. (1988b) Photophysiology of a tomato mutant deficient in labile phytochrome. J. Plant Physiol. 133: 436–440.

    Article  Google Scholar 

  • Baskin T.I. and Lino M. (1987) An action spectrum in the blue and ultraviolet for phototropism in alfalfa. Photochem. Photobiol. 46:127–136.

    Article  Google Scholar 

  • Cosgrove D.J. (1986) Photomodulation of growth. In: Photomorphogenesis in Plants, pp. 341–366, endrick R.E. and Kronenberg G.H.M.K (eds.) Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Downs R.J. and Siegelman H.W. (1963) Photocontrol of anthocyanin synthesis in milo seedlings. Plant Physiol. 38:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Drumm H. and Mohr H. (1978) The mode of interaction between blue (UV) light photoreceptor and phytochrome in anthocyanin formation of the Sorghum seedling. Photochem. Photobiol. 27: 241–248.

    Article  CAS  Google Scholar 

  • Drumm-Herrel H. and Mohr H. (1981) A novel effect of UV-B in a higher plant (Sorghum vulgare). Photochem. Photobiol. 33: 391–398.

    Article  CAS  Google Scholar 

  • Drumm-Herrel H. and Mohr H. (1984) Mode of coaction of phytochrome and blue light photoreceptor in control of hypocotyl elongation. Photochem. Photobiol. 40: 261–266.

    Article  CAS  Google Scholar 

  • Drumm-Herrel H. and Mohr H. (1991) Involvement of phytochrome in light control of stem elongation in cucumber (Cucumis sativus L.) seedlings. Photochem. Photobiol. 53: 539–544.

    Article  CAS  Google Scholar 

  • Elmlinger M.W. and Mohr H. (1991) Coaction of blue/ultraviolet-A light and light absorbed by phytochrome in controlling the appearance of ferredoxin-dependent glutamate synthase in the Scots pine (Pinus sylvestris L.) seedling. Planta 189: 374–380.

    Google Scholar 

  • Elmlinger M.W. and Mohr H. (1992) Glutamine synthetase in Scots pine seedlings and its control by blue light and light absorbed by phytochrome. Planta 188: 396–402.

    Article  CAS  Google Scholar 

  • Elmlinger M.W., Batschauer A., Oelmüller R. and Mohr H. (1993) Coaction of blue light and light absorbed by phytochrome in control of glusamine synthetase gene expression in Scots pine (Pinus sylvestris L.) seedlings. Planta in press.

    Google Scholar 

  • Fernbach E. and Mohr H. (1990) Coaction of blue/ultraviolet-A light and light absorbed by phytochrome in controlling growth of pine (Pinus sylvestris L.) seedlings. Planta 180: 212–216.

    Article  Google Scholar 

  • Gaba V., Black M. and Attridge T.H. (1984) Photocontrol of hypocotyl elongation in de-etiolated Cucumis sativus L. Plant Physiol. 74: 897–900.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef, M, Rolff E. and Spruit C.J.P. (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. 100:147–160.

    Google Scholar 

  • Liscum E. and Hangarter R.P. (1991) Arabidopsis mutants lacking blue light-dependent inhibition of hypocotyl elongation. Plant Cell 3: 685–694.

    PubMed  Google Scholar 

  • Mohr H. (1972) Lectures on Photomorphogenesis, Chapter 22, Springer, Heidelberg, New York.

    Book  Google Scholar 

  • Mohr H. (1982) Principles in plant morphogenesis. In: Axioms and Principles of Plant Construction, pp. 93–111, Sattler R. (ed.) Martinus Nijhoff, The Hague.

    Chapter  Google Scholar 

  • Mohr H. (1986) Mode of coaction between blue/UV light and light absorbed by phytochrome in higher plants. In: Blue Light Responses — Phenomena and Occurrence in Plants and Microorganisms, Vol. I, pp. 133–144, Senger H. (ed.) CRC Press, Boca Raton.

    Google Scholar 

  • Miflin B.J. and Lea P.J. (1976) The pathway of nitrogen metabolism in plants. Phytochemistry 15: 873–885.

    Article  CAS  Google Scholar 

  • Oelmüller R. and Mohr H. (1984) Responsivity amplification by light in phytochrome-mediated induction of chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP-dependent, EC 1.2.1.13) in the shoot of milo (Sorghum vulgare Pers). Plant Cell Environ. 7: 29–37.

    Article  Google Scholar 

  • Oelmüller R. and Mohr H. (1985a) Specific action of blue light on phytochrome-mediated enzyme syntheses in the shoot of milo (Sorghum vulgare Pers). Plant Cell Environ. 8: 27–31.

    Article  Google Scholar 

  • Oelmüller R. and Mohr H. (1985b) Mode of coaction between blue/UV light and light absorbed by phytochrome in light-mediated anthocyanin formation in the milo (Sorghum vulgare Pers.) seedling. Proc. Natl. Acad. Sci. USA 82: 6124–6128.

    Article  PubMed  Google Scholar 

  • Oelmüller R. and Kendrick R.E. (1991) Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins. Plant Mol. Biol. 16: 293–299.

    Article  PubMed  Google Scholar 

  • Oelze-Karow H. and Mohr H. (1989) An analysis of phytochrome-mediated threshold control of hypocotyl growth in mustard (Sinapis alba L.) seedlings. Photochem. Photobiol. 50:133–141.

    Article  CAS  Google Scholar 

  • Rich T. and Smith H. (1985) Phytochrome and phototropism in light-grown plants. In: Book of Abstracts, European Symposium on Photomorphogenesis in Plants, p. 108, Wageningen.

    Google Scholar 

  • Shinkle J.R. and Jones R.J. (1988) Inhibition of stem elongation in Cucumis seedlings by blue light requires calcium. Plant Physiol. 86: 960–966.

    Article  PubMed  CAS  Google Scholar 

  • Shropshire W. and Mohr H. (1970) Gradient formation of anthocyanin in seedlings of Fagopyrum and Sinapis unilaterally exposed to red and far-red light. Photochem. Photobiol. 12:145–149.

    Article  PubMed  CAS  Google Scholar 

  • Steinitz B. and Poff K.L. (1984) Phototropism in Arabidopsis seedlings. Supplement to Plant Physiol. 75: no. 1, 73.

    Google Scholar 

  • Woitzik F. and Mohr H. (1988b) Control of hypocotyl gravitropism by phytochrome in a dicotyledonous seedling (Sesamum indicum L.). Plant Cell Environ. 11: 663–668.

    Article  CAS  Google Scholar 

  • Yatsuhashi H., Hashimoto T. and Shimizu S. (1982) Ultraviolet action spectrum for anthocyanin formation in broom Sorghum first internode. Plant Physiol. 70: 735–741.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mohr, H. (1994). Coaction between pigment systems. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics