Skip to main content

Solvation mechanisms in low molecular weight polyethers

  • Chapter
Applications of Electroactive Polymers

Abstract

Since the proposal by Armand [1] that high molecular weight polyethers containing dissolved ions could be used as solid polymeric electrolytes (SPEs), there has been considerable research dedicated to the pragmatic issues of improving the ionic conductivities of these systems and of developing polymer-based high energy density rechargeable batteries. Macro-molecular solvents, while solid in the bulk state, have almost liquid-like mobility on the microscopic scale. This unique quality makes these systems an extremely interesting branch of electrochemical materials which cannot be fully understood in terms of more classical models either of conventional low molecular weight liquid electrolytes or of the well-known crystalline ionic conductors (e.g. the β-alumina family). Exploring the more fundamental aspects of these systems is important in its own right, but should also serve to clarify the mechanism of ionic conductivity and lead to the selection of more suitable battery materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armand, M.B., Chabagno, J.M. and Duclot, M.J. (1979) In Fast Ion Transport in Solids (eds Vashista, Mundy and Shenoy), North Holland, New York, p. 131.

    Google Scholar 

  2. Watanabe, M. and Ogata, N. (1988) Brit. Polym. J., 20, 181.

    Article  CAS  Google Scholar 

  3. Vincent, C. (1987) Progr. Soi St. Chem., 17, 145.

    Article  CAS  Google Scholar 

  4. See General Discussion, in Faraday Disc. of the Chem. Soc., 88, (1989), 87.

    Google Scholar 

  5. Cowie, J. (1991) Oral presentation at the 3rd International Symposium on Polymer Electrolytes, Annecy, France, June 1991.

    Google Scholar 

  6. Gauthier, M., Belanger, A., Kapfer, B. et al. (1989) In Polymer Electrolyte Reviews—2, (eds MacCallum and Vincent), Elsevier, New York, 285.

    Google Scholar 

  7. Huq, R. and Farrington, G.C. (1988) J. Electrochem. Soc., 135(2), 524.

    Article  CAS  Google Scholar 

  8. Huq, R. and Farrington, G.C. (1988) Solid State Ionics, 28–30, 990.

    Article  Google Scholar 

  9. Farrington, G.C. and Linford, P. (1989) In Polymer Electrolyte Reviews—2 (eds MacCallum and Vincent), Elsevier, New York, 255.

    Google Scholar 

  10. Huq, R., Saltzberg, M. and Farrington, G.C. (1989) J. Electrochem. Soc., 136(5), 1260.

    Article  CAS  Google Scholar 

  11. Latham, R., Linford, R. and Schiindwein, W. (1989) Faraday Disc, of the Chem. Soc., 88, 103.

    Article  CAS  Google Scholar 

  12. Martins, M. and Sequeira, C. (1990) J. Power Sources, 32, 107.

    Article  CAS  Google Scholar 

  13. Balasubramanian, D. and Chandani, B. (1983) J. Chem. Ed., 60(1), 77.

    Article  CAS  Google Scholar 

  14. Yanagida, S., Takahashi, K. and Okahara, M. (1977) Bull. Chem. Soc. Jap., 50(6), 1386.

    Article  CAS  Google Scholar 

  15. Born, M. (1920) Z. Physik, 1, 45.

    Article  CAS  Google Scholar 

  16. Hughes, E.D., Ingold, C.K., Patai, S. and Pocker, Y. (1957) J. Chem. Soc., 1206.

    Google Scholar 

  17. Pettit, L. and Bruckenstein, S. (1966) J. Am. Chem. Soc., 88(21), 4783.

    Article  CAS  Google Scholar 

  18. Popovych, O. and Tomkins, R. (1981) Nonaqueous Solution Chemistry, Wiley, New York.

    Google Scholar 

  19. Gutmann, V. (1972) Fortschr. Chem. Forsch., 27, 59.

    Article  CAS  Google Scholar 

  20. Katzin, L. and Gerbert, E. (1950) J. Am. Chem. Soc., 72, 5455.

    Article  CAS  Google Scholar 

  21. Katzin, L. (1957) J. Inorg. Nucl. Chem., 4, 187.

    Article  CAS  Google Scholar 

  22. Katzin, L. (1962) J. Chem. Phys., 36(11), 3034.

    Article  CAS  Google Scholar 

  23. Katzin, L. (1966) Transition Metal Chemistry, 3, 56.

    CAS  Google Scholar 

  24. Jorgensen, C. (1963) Inorganic Complexes, Academic, New York.

    Google Scholar 

  25. Werner, A. (1893) Z. Anorg. Chem., 3, 267.

    Article  Google Scholar 

  26. Werner, A. (1905) Neuere Anschauungen auf dem Gebiete der anorganischen Chemie, Vieweg, Braunschweig.

    Google Scholar 

  27. Cotton, F. and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th edn, Wiley, New York.

    Google Scholar 

  28. Busch, D. and Stephenson, N. (1990) Coordination Chemistry Reviews, 100, 119.

    Article  CAS  Google Scholar 

  29. Cotton, F. (1990) Chemical Applications of Group Theory, 3rd edn, Wiley, New York.

    Google Scholar 

  30. Greenwood, N. and Earnshaw, A. (1984) Chemistry of the Elements, Pergamon, New York.

    Google Scholar 

  31. Ballhausen, C. (1962) Introduction to Ligand Field Theory McGraw-Hill, New York.

    Google Scholar 

  32. Lever, A. (1968) Inorganic Electronic Spectroscopy, Elsevier, New York.

    Google Scholar 

  33. Groh, V. (1925) Z. Anorg. Chem. 146, 305.

    Article  CAS  Google Scholar 

  34. Fine, D. (1962) J. Am. Chem. Soc., 84, 1139.

    Article  CAS  Google Scholar 

  35. Trutia, A. and Musa, M. (1966) Revue Roumaine de Chimie, 11, 927.

    CAS  Google Scholar 

  36. Ishihara, I., Hara, K. and Osugi, J. (1974) Rev. Phys. Chem. Jap., 44(1), 11.

    CAS  Google Scholar 

  37. Ishihara, I. (1978) Rev. Phys. Chem. Jap., 48(1), 27.

    CAS  Google Scholar 

  38. Gryzybkowski, W. and Pilarczyk, M. (1990) Electrochim. Acta, 35(2), 351.

    Article  Google Scholar 

  39. Pilarczyk, M., Gryzybkowski, W. and Klinzpron, L. (1990) Polyhedron, 9(11), 1375.

    Article  CAS  Google Scholar 

  40. Antonelli, M., Ceipidor, U., Bucci, R. and Carunchio, V. (1980) Inorganica Chimica, 45, LI73.

    Google Scholar 

  41. Buffagni, S. and Dunn, T. (1961) J. Chem. Soc., 5105.

    Google Scholar 

  42. Suzuki, H., Ishiguro, S. and Ohtaki, H. (1990) J. Chem. Soc. Far. Trans., 86(12), 2179.

    Article  CAS  Google Scholar 

  43. Mendolia, M. and Farrington, G.C. (1992) Electrochim. Acta, 37(9), 1695.

    Article  CAS  Google Scholar 

  44. Mendolia, M., Farrington, G.C. and Lindgren, J., unpublished results.

    Google Scholar 

  45. Mendolia, M. and Farrington, G.C., unpublished results.

    Google Scholar 

  46. Nicholls, D. (1973) Comprehensive Inorganic Chemistry, Pergamon Press, Oxford.

    Google Scholar 

  47. Jaffe, H.H. and Orchin, M. (1962) Theory and Applications of Ultraviolet Spectroscopy, John Wiley and Sons, Inc., New York.

    Google Scholar 

  48. Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 3179.

    Article  CAS  Google Scholar 

  49. Fine, D.A. (1965) Inorg. Chem, 4, 345.

    Article  CAS  Google Scholar 

  50. Shchukarev, S.A. and Lobaneva, O.A. (1955) Dokl. Akcol. Nauk. SSSR, 105, 741.

    CAS  Google Scholar 

  51. Sramko, R. (1963) Chem. Zvesti, 17, 725.

    CAS  Google Scholar 

  52. Goodgame, D.M.L., Goodgame, M. and Cotton, F.A. (1961) J. Am. Chem. Soc., 83, 4161.

    Article  CAS  Google Scholar 

  53. Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 2567.

    Article  CAS  Google Scholar 

  54. Angell, C.A. and Gruen, D.M. (1966) J. Am. Chem. Soc., 88, 5192.

    Article  CAS  Google Scholar 

  55. Ludi, A. and Feitknecht, W. (1963) Helv. Chim. Acta, 46, 2226.

    Article  CAS  Google Scholar 

  56. Knetsch, D. and Groeneveld, W.L. (1973) Inorg. Chim. Acta, 7, 81.

    Article  CAS  Google Scholar 

  57. Furlani, C. and Morpurgo, J. (1961) Z. Physik Chem, 28, 93.

    Article  CAS  Google Scholar 

  58. Fine, D.A. (1966) Inorg. Chem, 5, 197.

    Article  CAS  Google Scholar 

  59. Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 1727.

    Article  CAS  Google Scholar 

  60. Griffiths, T.R. and Scarrow, R.K. (1969) Trans. Fara. Soc., 65, 1427.

    Article  CAS  Google Scholar 

  61. Mark, J.E. and Flory, P.J. (1965) J. Am. Chem. Soc., 87, 1415.

    Article  CAS  Google Scholar 

  62. Cai, H. and Farrington, G.C., submitted for publication.

    Google Scholar 

  63. Walden, (1906) Z. Electrochem., 12, 77.

    Article  CAS  Google Scholar 

  64. Walden, (1906) Z. Phys. Chem, 55, 207.

    CAS  Google Scholar 

  65. Mendolia, M. and Farrington, G.C. (1993) Chem. Mater., in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mendolia, M., Cai, H., Farrington, G.C. (1993). Solvation mechanisms in low molecular weight polyethers. In: Scrosati, B. (eds) Applications of Electroactive Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1568-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1568-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4684-8

  • Online ISBN: 978-94-011-1568-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics