Skip to main content

Physiology of resistant interactions between Xanthomonas oryzae pv. oryzae and rice

  • Chapter
Molecular Mechanisms of Bacterial Virulence

Part of the book series: Developments in Plant Pathology ((DIPP,volume 3))

Abstract

Resistant interactions between Xanthomonas oryzae pv. oryzae and rice are characterized by increases in the activities of three extracellular peroxidases (two anionic and one cationic), lignin deposition, host cell death, and a decrease in the rate of bacterial multiplication. The timing and dynamics of these events is dependent on the specific avirulence gene-resistance gene interaction. In susceptible interactions, increases in peroxidase activity, lignin deposition, and host cell death are delayed, and bacterial multiplication is not inhibited. In the absence of light, the events associated with resistance do not occur, and a response similar to the susceptible response is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

HR:

Hypersensitive Reaction

LS:

Mild Water Soaking

NV.:

Pathovar

WS:

Water Soaking

References

  • Anuratha CS, Huang JK, Pingali A & Muthukrishnan S (1992) Isolation and characterization of a chitinase and its cDNA clone from rice. J Plant Biochem Biotech 1: 5–10.

    Article  CAS  Google Scholar 

  • Beardmore J, Ride JP & Granger JW (1983) Cellular lignification as a factor in the hypersensitive resistance of wheat to stem rust. Physiol Plant Pathol 22: 209–220.

    CAS  Google Scholar 

  • Bonas U, Stall RE & Staskawicz BJ (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218: 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Dudler R, Hertig C, Rebmann G, Bull J & Mauch F (1991) Nucleotide sequence of a peroxidase-encoding wheat gene. Plant Mol Biol 16: 329–331.

    Article  PubMed  Google Scholar 

  • Elstner EF (1982) Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol 33: 73–96.

    Article  CAS  Google Scholar 

  • Espelie KE, Franceshci VR & Kolattukudy PE (1986) Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol 81: 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Everdeen DS, Keifer S, Willard JJ, Muldoon EP, Dey PM, Li XB & Lamport DTA (1988) Enzymic cross-linkage of monomeric extensin precursors in vitro. Plant Physiol 87: 616–621.

    Article  PubMed  CAS  Google Scholar 

  • Flott BE, Moerschbacher BM & Reisener HJ (1989) Peroxidase isoenzyme patterns of resistant and susceptible wheat leaves following stem rust infection. New Phytol 111: 413–421.

    Article  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186.

    Article  CAS  Google Scholar 

  • Gaspar T, Penel C, Thorpe T & Greppin H (1982) Peroxidases: A Survey of Their Biochemical and Physiological Roles in Higher Plants. University of Geneva Press, Geneva.

    Google Scholar 

  • Goldberg R, Imberty A, Liberman M & Prat R (1986) Relationships between peroxidatic activities and cell wall plasticity, p. 208–220. In: Greppin H, Penel C & Gaspar T (eds.) Molecular and Physiological Aspects of Plant Peroxidases. University of Geneva, Geneva, Switzerland.

    Google Scholar 

  • Graham RC Jr, Lundholm U & Karnovsky MJ (1965) Cytochemical demonstration of peroxidase activity with 3-amino-9-ethylcarbazole. J Histochem Cytochem 13: 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Grisebach H (1981) Lignins. p. 457–478. In: Conn EE (ed.) The Biochemistry of Plants. Academic Press, New York.

    Google Scholar 

  • Hammerschmidt R, Nuckles E & Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20: 73–82.

    Article  CAS  Google Scholar 

  • Gross GG (1980) The biochemistry of lignification. Adv Bot Res 8: 25–63.

    Article  CAS  Google Scholar 

  • Herbers K, Conrads-Strauch J & Bonas U (1992) Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature, London 356: 172–174.

    Article  CAS  Google Scholar 

  • Hertig C, Regmann G, Bull J, Mauch F & Dudler R (1991) Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum L. Plant Mol Biol 16: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Hinnman RL & Lang J (1965) Peroxidase catalyzed oxidation of indole-3-acetic acid. Biochemistry 4: 144–158.

    Article  Google Scholar 

  • Hopkins CM, White FW, Choi SH, Guo A & Leach JE (1992) A family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact 5: 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Horino O & Kaku H (1989) Defense mechanisms of rice against bacterial blight caused by Xanthomonas campestris pv. oryzae. p. 135–152. In: Bacterial Blight in Rice. International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Intapruk C, Higashimura N, Yamamoto K, Okada N, Shinmyo A & Takano M (1991) Nulceotide sequences of two genomic DNAs encoding peroxidase from Arabidopsis thaliana. Gene 98: 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Hiraoka N, Ohbayashi A & Ohashi Y (1991) Purification and characterization of rice peroxidases. Agric Biol Chem 55: 2445–2454.

    Article  PubMed  CAS  Google Scholar 

  • Kerby K & Somerville SC (1989) Enhancement of specific intercellular peroxidases following inoculation of barley with Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 35: 323–337.

    Article  CAS  Google Scholar 

  • Kolattukudy P (1992) Plant-fungal communication that triggers genes for breakdown and reinforcement of host defensive barriers, p. 65–83. In: Verma DP (ed.) Molecular Signals in Plant-Microbe Communication. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Kolattukudy PE, Mohan R, Bajar MA & Sherf BA (1992) Plant oxygenases, peroxidases and oxidases. Biochem. Soc. Transact. 20: 333–337.

    CAS  Google Scholar 

  • Lagrimini LM (1991) Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol 96: 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Lagrimini LM, Burkhart W, Moyer M & Rothstein S (1987) Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci USA 84: 7542–7546.

    Article  PubMed  CAS  Google Scholar 

  • Li WX, Kodma O & Akatsuka T (1991) Role of oxygenated fatty acids in rice phytoalexin production. Agri Biol Chem 55: 1041–1047.

    Article  CAS  Google Scholar 

  • Mazza G, Welinder KG (1980) Covalent structure of turnip peroxidase 7. Cyanogen bromide fragments, complete structure and comparison to horseradish peroxidase C. Eur J Biochem 108: 481–489.

    Article  PubMed  CAS  Google Scholar 

  • Mellon JE & Lee LS (1985) Elicitation of cotton isoperoxidases by Aspergillus flavus and other fungi pathogenic to cotton. Physiol Plant Pathol 27: 281–288.

    Article  CAS  Google Scholar 

  • Moerschbacher BM, Noll UM, Flott BE & Reisener HJ (1988) Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near-isogenic wheat lines. Physiol Mol Plant Pathol 33: 33–46.

    Article  CAS  Google Scholar 

  • Mohan R & Kolattukudy PE (1990) Differential activation of expression of a suberization-associated anionic peroxidase gene in near-isogenic resistant and susceptible tomato lines by elicitors of Verticillium albo-atrum. Plant Physiol 92: 276–280.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K & Watanabe M (1977) Studies on the mechanisms of resistance of rice plants against Xanthomonas oryzae. IV. Extraction and partial purification of antibacterial substances from infected leaves. Ann Phytopathol Soc Japan 43: 449–454.

    Article  Google Scholar 

  • Ogawa T, Yamamoto T, Khush GS, Mew TW & Kaku H (1988) Near-isogenic lines as international differentials for resistance to bacterial blight of rice. Rice Genetics Newsletter 5: 106–107.

    Google Scholar 

  • Ohta H, Shida K, Peng YL, Furusawa I, Shishiyama J, Aibara S & Morita Y (1991) A lipoxygenase pathway is activated in rice after infection with the rice blast fungus, Magnaporthe grisea. Plant Physiol 97: 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Reimers PJ, Guo A & Leach JE (1992) Increased activity of a cationic peroxidase associated with incompatible interactions between Xanthomonas oryzae pv. oryzae and rice (Oryza sativa). Plant Physiol 99: 1044–1050.

    Article  PubMed  CAS  Google Scholar 

  • Reimers PJ & Leach JE (1991) Race-specific resistance to Xanthomonas oryzae pv. oryzae conferred by bacterial blight resistance gene Xa-10 in rice (Oryza sativa) involves accumulation of a lignin-like substance in host tissues. Physiol Mol Plant Pathol 38: 39–55.

    Article  CAS  Google Scholar 

  • Ride JP (1983) Cell walls and other structural barriers in defence, p. 215–236. In: Callow JA (ed.) Biochemical Plant Pathology. Wiley-Interscience, New York.

    Google Scholar 

  • Robb J, Lee SW, Mohan R & Kolattukudy PE (1991) Chemical characterization of stress-induced vascular coating in tomato. Plant Physiol 97: 528–536.

    Article  PubMed  CAS  Google Scholar 

  • Roberts E, Kutchan T & Kolattukudy PE (1988) Cloning and characterization of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Mol Biol 11: 15–26.

    Article  CAS  Google Scholar 

  • Schmid PS & Feucht W (1980) Tissue-specific oxidation browning of polyphenols by peroxidase in cherry shoots. Gartenbauwissenschaft 45: 68–73.

    CAS  Google Scholar 

  • Schweizer P, Hunziker W & Mösinger E (1989) cDNA cloning, in vitro transcription and partial sequence analysis ofmRNAs from winter wheat (Triticum aestivum L.) with induced resistance to Erysiphe graminis f. sp. tritici. Plant Mol Biol 12: 643–654.

    Article  CAS  Google Scholar 

  • Seevers PM, Daly JM & Catedral FF (1971) The role of peroxidase isozymes in resistance to wheat stem rust disease. Plant Physiol 48: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Smith J A & Hammerschmidt R (1988) Comparative study of acidic peroxidases associated with induced resistance in cucumber, muskmelon, and watermelon. Physiol Mol Plant Pathol 33: 255–261.

    Article  CAS  Google Scholar 

  • Sridhar R & Ou SH (1974) Biochemical changes associated with the development of resistant and susceptible types of rice blast lesions. Phytopathol Z 79: 222–230.

    Article  CAS  Google Scholar 

  • Swings J, Van den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW & Kersters K. (1990) Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. Int J Syst Bacteriol 40: 309–311.

    Article  Google Scholar 

  • Thomas JM & Hodes ME (1981) A new discontinuous buffer system for the electrophoresis of cationic proteins at near-neutral pH. Anal Biochem 118: 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Tiburzy R & Reisener HJ (1990) Resistance of wheat to Puccinia graminis f. sp. tritici: Association of the hypersensitive reaction with the cellular accumulation of lignin-like material and callose. Physiol Mol Plant Pathol 36: 109–120.

    Article  CAS  Google Scholar 

  • Toyoda S & Suzuki N (1960) Histochemical studies on rice blast lesions. IV. Changes in the activity of oxidases in infected tissue. Ann Phytopathol Soc Japan 25: 172–177.

    Article  Google Scholar 

  • Urs NVR & Dunleavy JM (1975) Enhancement of the bactericidal activity of a peroxidase system by phenolic compounds. Phytopathology 65: 686–690.

    Article  CAS  Google Scholar 

  • Van Huystee RB & Cairns WL (1990) Appraisal of studies on induction of peroxidase and associated porphyrin metabolism. Bot Rev 46: 429–446.

    Article  Google Scholar 

  • Venere RJ (1980) Role of peroxidase in cotton resistant to bacterial blight. Plant Sci Lett 20: 47–56.

    Article  CAS  Google Scholar 

  • Whalen MC, Stall RE & Staskawicz BJ (1988) Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci USA 85: 6743–6747.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leach, J.E., Guo, A., Reimers, P., Choi, S.H., Hopkins, C.M., White, F.F. (1994). Physiology of resistant interactions between Xanthomonas oryzae pv. oryzae and rice. In: Kado, C.I., Crosa, J.H. (eds) Molecular Mechanisms of Bacterial Virulence. Developments in Plant Pathology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0746-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0746-4_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4322-9

  • Online ISBN: 978-94-011-0746-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics