Skip to main content

Biodegradation of aliphatic polyesters

  • Chapter
Degradable Polymers

Summary

Aliphatic polyesters presently constitute the most attractive class of artificial polymers which can degrade in contact with living tissues or under outdoor conditions. Work has been in progress for the last two decades which has led to their applications in surgery and in pharmacology. Basically, these compounds are also of interest for outdoor applications such as packagings or mulch films and in plant therapy by controlled delivery of pesticides or insecticides in agriculture, although they are still too expensive. Factors which can affect their biodegradation have been investigated world-wide. However, the literature contains confusing statements and controversial data. This chapter is aimed at clarifying the state-of-the-art. After general considerations, including comments on terminology and on enzymatic, hydrolytic degradation mechanisms, discussion is focused on the effects of influencing factors, namely, main structural parameters, the presence of chemically active additives, and the composition of degradation media. Although poly(α-hydroxyacids) derived from lactic and glycolic acids are, by far, the most important members of the aliphatic polyester family, the poly(β-hydroxyacids) and other aliphatic polyesters such as poly(ε-caprolactone), polydioxanones, etc. are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hassig, A. and Stampfli, K. (1969) Plasma substitutes: past and present. Bibliotheca. Haemat., 33, 1–8.

    CAS  Google Scholar 

  2. Rosato, D. V. (1983) Polymers, processes and properties of medical plastics including markets and applications, in Biocompatible Polymers, Metals and Composites, (ed. M. Szycher), Technomic. Publ. Co. Inc., Lancaster, Chapter 45, pp. 1019–67.

    Google Scholar 

  3. Charles, E. L. and Buffalo, N. Y. (1954) Preparation of high molecular weight polyhydroxyacetic ester, US Patent 2,668162.

    Google Scholar 

  4. Schmitt E. E. and Polistina, R. A. (1967) Surgical sutures, US Patent 3,297,033.

    Google Scholar 

  5. Frazza, E. J. and Schmitt, E. E. (1971) A new absorbable suture, J. Biomed. Mater. Res. Symposium, 1, 43–58.

    Article  Google Scholar 

  6. Vert, M. (1992) Introductory remarks, in Biodegradable Polymers and Plastics, (eds M. Vert et al.), Royal Society of Chemistry, Cambridge, pp. 1–3.

    Google Scholar 

  7. Heller, J. (1983) Use of polymers in controlled drug release, in Biocompatible Polymers, Metals and Composites, (ed. M. Szycher), Technomic Publ. Co. Inc., Lancaster, Chapter 24, pp. 551–84.

    Google Scholar 

  8. Langer, R. S. and Peppas, N. A. (1981) Present and future applications of biomaterials in controlled drug delivery systems, Biomaterials, 2, 201–14.

    Article  CAS  Google Scholar 

  9. Langer, R. S. and Peppas, N. A. (1983) Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review, J. Macromol Sci., REC. Macromol. Chem Phys., C23, 61–126.

    Article  CAS  Google Scholar 

  10. Gilding, D. K. (1981) Biodegradable polymers, Biocompat. Clin. Implant. Mater., 2, 209–32.

    CAS  Google Scholar 

  11. Williams, D. F. (1982) Biodegradation of surgical polymers, J. Mater. Sci., 17, 1233–46.

    Article  CAS  Google Scholar 

  12. Pitt, C. G., Marks, T. A. and Schindler, A. (1981) Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists, in National Institute on Drug Abuse Research Monograph, (eds R. E. Willette and G. Barnett), Naltrexone, Volume 28, pp. 232–53.

    Google Scholar 

  13. Gilbert, R. D., Stannett, V., Pitt, C.G. and Schindler, A. (1982) The design of biodegradable polymers: two approachs, in Development in Polymer Degradation (ed. N. Grassie), Volume 4, Applied Science Publishers, London, pp. 259–93.

    Google Scholar 

  14. Graham, N. B. and Wood, D. A. (1982) Hydrogels and biodegradable polymers for the controlled delivery of drugs, Polym. News, 8, 230–6.

    CAS  Google Scholar 

  15. Griffin, G. J. L. (1980) Synthetic polymers and the living environment, Pure Appl. Chem., 52, 399–407.

    Article  CAS  Google Scholar 

  16. Holland, S. J., Tighe, B. J. and Gould, P. L. (1986) Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems, J. Control. Rel., 4, 155–80.

    Article  CAS  Google Scholar 

  17. Guillet, J. E., Huber, H. X. and Scott, J. (1992) Studies of the biodegradation of synthetic plastics, in Biodegradable Polymers and Plastics (eds M. Vert et al.), Royal Society of Chemistry, Cambridge, pp. 73–92.

    Google Scholar 

  18. Albertsson, A. C. and Karlsson, S. (1990) Biodegradation and test methods for environmental and biomedical applications of polymers, in Degradable Materials: Perspectives, Issues and Opportunities (eds. S. A. Barenberg, J. L. Brash, R. Narayan and A. E. Redpath), CRC Press, Boca Raton, pp. 263–86.

    Google Scholar 

  19. Ottenbrite, R. M., Albertsson, A. C. and Scott, G. (1992) Discussion on degradation terminology, in Biodegradable Polymers and Plastics (eds M. Vert et al.), Royal Society of Chemistry, Cambridge 73–92.

    Google Scholar 

  20. Vert, M. (1981) Bioresorbable polyesters for bone surgery, Makromol. Chem., Suppl., 5, 30–41.

    Article  CAS  Google Scholar 

  21. Huang, S. J., Bitritto, M. and Leong, K. W. et al. (1978) The effects of some structural variations on the biodegradability of step-growth polymers, Stabilization and Degradation of Polymers (Am. Chem. Soc.), 17, 209–214.

    Google Scholar 

  22. Vert, M., Li, S. M., Spenlehauer, G. and Guerin, P., (1992) Bioresorbability and biocompatibility of aliphatic polyesters, J. Mater Sci., Materials in Medicine, 3, 432–46.

    Article  CAS  Google Scholar 

  23. Leray, J., Vert, M. and Blanquaert, D. (1976) Nouveau matériau de prothése osseuse et son application, French Patent Appl. 76,281,63.

    Google Scholar 

  24. Vert, M., Christel, P., Chabot, F. and Leray, J. (1984) Bioresorbable plastic materials for bone surgery, in Macromolecular Biomaterials, (eds G. W. Hastings and P. Ducheyne), CRC Press, Boca Raton, Chapter 6, pp. 119–42.

    Google Scholar 

  25. Chabot F., Vert, M., Chapelle, S. and Granger, P. (1983) Configurational structures of lactic acid stereocopolymers as determined by 13C—1H n.m.r., Polymer, 24, 53–60.

    Article  CAS  Google Scholar 

  26. Williams, D. F. (1977) Enzyme-polymer interactions, J. Bioeng., 1, 279–94.

    Google Scholar 

  27. Baba, H., Tanahashi, N., Kumagai, Y. and Doi, Y. (1992) Effects of molecular structure on enzymatic degradation of polyesters, Nippon Kagaku Kaishi, 5, 527–33.

    Article  Google Scholar 

  28. Ray, J. A., Doddi, N. and Regula, D. et al. (1981) Polydioxanone (PDS), a novel monofilament synthetic absorbable suture, Surg. Gynecol. Obstet., 153, 497–507.

    CAS  Google Scholar 

  29. Beck L. R. and Tice, T. R. (1983) Poly(lactic acid) and poly(lactic acid-co-glycolic acid) contraceptive delivery systems, in Advances in Human Fertility and Reproductive Endocrinology: Vol. 2, Long Acting Steroid Contraception, Raven Press, New York, pp. 175–199.

    Google Scholar 

  30. Williams, D. F. and Mort, E. (1977) Enzyme accelerated hydrolysis of poly(glycolic acid), J. Bioeng., 1, 231–38.

    CAS  Google Scholar 

  31. Reed, A. M. (1978) In vitro and in vivo studies of biodegradable polymers for use in medicine and surgery, PhD thesis, University of Liverpool, UK.

    Google Scholar 

  32. Salthouse, T. N. and Matlaga, B. F. (1975) Approach to the numerical quantitation of acute tissue response to biomaterials, Biomater. Med. Devices Artif. Organs, 3, 47–56.

    CAS  Google Scholar 

  33. Herrmann, J. B., Kelly, R. J. and Higgins, G. A. (1970) Polyglycolic acid sutures, laboratory and clinical evaluation of a new absorbable suture material, Arch. Surg., 100, 486–90.

    Article  CAS  Google Scholar 

  34. Williams, D. F. (1981) Enzyme hydrolysis of polylactic acid, Eng. Med., 10, 5–7.

    Article  Google Scholar 

  35. Ashley, S. L. and McGinity, J. W. (1989) Enzyme-mediated drug release from poly(DL-lactide) matrices, Congr. Int. Technol. Pharm., 5, 195–204.

    CAS  Google Scholar 

  36. Salthouse, T. N. and Matlaga, B. F. (1975) Polyglactin 910 suture absorption and the role of cellular enzymes, Surg. Gynecol. Obstet., 142, 544–50.

    Google Scholar 

  37. Schakenraad, J. M., Hardonk, M. J., Feijen, J., et al. (1990) Enzymatic activity toward poly(L-lactic acid) implants, J. Biomed. Mater. Res., 24, 529–45.

    Article  CAS  Google Scholar 

  38. Younes, H., Nataf, P. R., Cohn, D. et al. (1988) Biodegradable PELA block copolymers: in vitro degradation and tissue reaction, Biomat., Art. Cells, Art. Org., 16, 705–19.

    CAS  Google Scholar 

  39. Tsakala, T. M. (1987) Formulations à libération progressive à base de polymères biodégradables, application à la chimiothérapie expérimentale à la malaria, PhD thesis, Université Catholique de Louvain La Neuve, Belgium.

    Google Scholar 

  40. Zaikov, G. E. (1985) Quantitative aspects of polymer degradation in the living body, JMS-Rev. Macromol Chem. Phys., C25, 551–97.

    CAS  Google Scholar 

  41. Tabata, Y. and Ikada, Y. (1988) Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers, J. Biomed. Mater. Res., 22, 837–58.

    Article  CAS  Google Scholar 

  42. Woodward, S. C., Brewer, P. S. and Moatmed, F. et al. (1985) The intracellular degradation of poly(ε-caprolactone), J. Biomed. Mater. Res., 19, 437–44.

    Article  CAS  Google Scholar 

  43. Schindler, A. and Pitt, C. G. (1982) Biodegradable lastomeric polyesters, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem., 23, 111–12.

    CAS  Google Scholar 

  44. Pitt, C. G. and Schindler, A. (1983) Biodegradable polymers of lactones, US Patent 4, 379, 138.

    Google Scholar 

  45. Pitt, C. G., Hendren, R. W., Schindler, A. and Woodward, S. C. (1984) The enzymatic surface erosion of aliphatic polyesters, J. Control. Rel., 1, 3–14.

    Article  CAS  Google Scholar 

  46. Cox, M. K. (1992) The effect of material parameters on the properties and biodégradation of ‘BIOPOL’, in Biodegradable Polymers and Plastics, (eds M. Vert et al.), Royal Society of Chemistry, Cambridge pp. 95–100.

    Google Scholar 

  47. Doi, Y., Kumagai, Y., Tanahashi, N. and Mukai, K. (1992) Structural effects on biodegradation of microbial and synthetic poly(hydroxyalkanoates), in Biodegradable Polymers and Plastics (eds M. Vert et al.), Royal Society of Chemistry, Cambridge, pp. 139–48.

    Google Scholar 

  48. Doi, Y., Kanesawa, Y., Kunioka, M. and Saito, T. (1990) Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxyvalerate), Macromolecules, 23, 26–31.

    Article  CAS  Google Scholar 

  49. Kanesawa, Y. and Doi, Y. (1990) Hydrolytic degradation of microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibres, Makromol. Chem., Rapid Commun., 11, 679–82.

    Article  CAS  Google Scholar 

  50. Kumagai, Y. and Doi, Y. (1992) Enzymatic degradation of binary blends of microbial poly(3-hydroxybutyrate) with enzymatically active polymers, Polym. Degr. Stabl., 37, 253–6.

    Article  CAS  Google Scholar 

  51. Gilmore, D. F., Lotti, N. and Lenz, R. W. et al (1992) Biodegradability of blends of poly(hydroxybutyrate-co-hydroxyvalerate) with ester-substituted celluloses, in Biodegradable Polymers and Plastics (eds M. Vert et al.), Royal Society of Chemistry, Cambridge, pp. 251–4.

    Google Scholar 

  52. Pitt, C. G. (1992) Non-microbial degradation of polyesters: mechanisms and modifications, in Biodegradable Polymers and Plastics, (eds M. Vert et al.), Royal Society of Chemistry, Cambridge, pp. 7–19.

    Google Scholar 

  53. Ginde, R. M. and Gupta, R. K. (1987) In vitro chemical degradation of poly(glycolic acid) pellets and fibres, J. Appl. Polym. Sci., 33, 2411–29.

    Article  CAS  Google Scholar 

  54. Singh, M., Singh, A. and Talwar, G. P. (1991) Controlled delivery of diphtheria toxoid using biodegradable poly(D,L-lactide) microcapsules, Pharm. Res., 8, 958–61.

    Article  CAS  Google Scholar 

  55. Kimura, Y., Matsuzaki, Y., Yamane, H. and Kitao, T. (1989) Preparation of block copoly(ester-ether) comprising poly(lactide) and poly(oxypropylene) and degradation of its fibre in vitro and in vivo, Polymer, 30, 1342–9.

    Article  CAS  Google Scholar 

  56. Casey, D. J. and Epstein, M. (1977) Normally solid, bioabsorbable hydrolyzable, polymeric reaction product, US Patent 4, 048. 25.

    Google Scholar 

  57. Pitt, C. G., Gratzel, M. M., Kimmel, G. L. et al. (1981) Aliphatic polyesters. 2. The degradation of poly(DL-lactide), poly(ε-caprolactone) and their copolymers in vivo, Biomaterials, 2, 215–20.

    Article  CAS  Google Scholar 

  58. Hutchinson, F. G. (1982) Continuous release pharmaceutical compositions, E. U. Patent 0,058,481.

    Google Scholar 

  59. Hutchinson, F. G. and Furr, B. J. A. (1985) Biodegradable polymers for the sustained release of polypeptides, Biochem. Soc. Trans., 13, 520–3.

    CAS  Google Scholar 

  60. Sanders, L. M., McRae, G. I., Vitale, K. M. and Kell, B. A. (1985) Controlled delivery of an LHRH analogue from biodegradable injectable microspheres, J. Control. Rel., 2, 187–95.

    Article  CAS  Google Scholar 

  61. St Pierre, T. and Chiellini, E. (1987) Biodegradability of synthetic polymers for medical and pharmaceutical applications: Part 2-Backbone hydrolysis, J. Bioact. Comp. Polym., 2, 4–30.

    Article  Google Scholar 

  62. Lewis, D. H. (1990) Controlled release of bioactive agents from lactide/glycolide polymers, Drug Pharm. Sci., 45 (Biodegrad. Polym. Drug Delivery Syst.), 1–41.

    CAS  Google Scholar 

  63. Kenley, R. A., Lee, M. O., Mahoney, II, T. R. and Sanders, L. M. (1987) Poly(lactide-co-glycolide) decomposition kinetics in vivo and in vitro, Macromolecules, 20, 2398–403.

    Article  CAS  Google Scholar 

  64. Schakenraad, J. M., Neuwenhuis, P., Molenaar, I. et al. (1989) In vivo and in vitro degradation of glycine/DL-lactic acid copolymers, J. Biomed. Mater. Res., 23, 1271–88.

    Article  CAS  Google Scholar 

  65. Helder, J., Dijkstra, P. J. and Feijen, J. (1990) In vitro degradation of glycine/dl-lactic acid copolymers, J. Biomed. Mater Res., 24, 1005–20.

    Article  CAS  Google Scholar 

  66. Cohen, S., Yoshioka, T., Lucarelli, M. et al. (1991) Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres, Pharm. Res., 8, 713–20.

    Article  CAS  Google Scholar 

  67. Holland, S. J., Jolly, A. M., Yasin, M. and Tighe, B. J. (1987) Polymers for biodegradable medical devices. II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies, Biomaterials, 8, 289–95.

    Article  CAS  Google Scholar 

  68. Knowles, J. C. and Hastings, G. W. (1991) In vitro degradation of a PHB/PHV copolymer and a new technique for monitoring early surface changes, Biomaterials, 12, 210–4.

    Article  CAS  Google Scholar 

  69. Li, S. M., Garreau, H. and Vert M. (1988) Bioresorbable polyesters of the glycolic/lactic type: in vitro investigations of the mechanism of degradation, in Preprints of Kunming International Symposium on Polymeric Biomaterials, Kunming, China, 3–7 May.

    Google Scholar 

  70. Li, S. M. (1989) Etude de la dégradation des poly(α-hydroxy acides) aliphatiques dérivés des acides lactique et glycolique en milieux aqueux modèles, PhD thesis. University of Rouen, France.

    Google Scholar 

  71. Li, S. M., Garreau, H. and Vert, M. (1990) Structure-property relationships in the case of the degradation of massive aliphatic poly(α-hydroxy acids) in aqueous media. Part 1: Poly(DL-lactic acid), J. Mater. Sci.: Materials in Medicine, 1, 123–30.

    Article  CAS  Google Scholar 

  72. Li, S. M., Garreau, H. and Vert, M. (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. Part 2: Degradation of lactide/glycolide copolymers: PLA37 5GA25 and PLA75GA25, J. Mater. Sci.: Materials in Medicine, 1, 131–9, 1990.

    Article  CAS  Google Scholar 

  73. Li, S. M., Garreau, H. and Vert, M. (1990) Structure-property relationships in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. Part 3: Influence of the morphology of poly(L-lactic acid), J. Mater. Sci.: Materials in Medicine, 1, 198–206.

    Article  CAS  Google Scholar 

  74. Vert, M., Li, S. M. and Garreau, H. (1991) More about the degradation of LA/GA-derived matrices in aqueous media, J. Control. Rel., 16, 15–26.

    Article  CAS  Google Scholar 

  75. Therin, M., Christel, P. Li, S. M. et al. (1992) In vivo degradation of massive poly (α-hydroxy acids): validation of in vitro findings, Biomaterials, 13, 594–600.

    Article  CAS  Google Scholar 

  76. Vert, M., Li, S. M. and Garreau, H. (1992) New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids, Clinical Materials, 10, 3–8.

    Article  CAS  Google Scholar 

  77. Benicewicz, B. C., Shalaby, S. W., Clemow, A. J. T. and Oser, Z. (1990) In vitro and in vivo degradation of poly(L-lactide) braided multifilament yarns, ACS Symp. Ser., 433 (Agric. Synth. Polym.; Biodegrad. Util.), 161–6.

    Article  CAS  Google Scholar 

  78. Huffman, K. R. and Casey, D. J. (1985) Effects of carboxylic end groups on hydrolysis of polyglycolic acid, J. Polym. Sci.: Polym. Chem. Ed., 23, 1939–54.

    Article  CAS  Google Scholar 

  79. Makino, K., Arakawa, M. and Kondo, T. (1985) Preparation and in vitro degradation properties of polylactide microcapsules, Chem. Pharm. Bull., 33, 1195–201.

    Article  CAS  Google Scholar 

  80. Shih, C., Higuchi, T. and Himmelstein, K. J. (1984) Drug delivery from catalysed erodible polymeric matrices of poly(ortho-esters), Biomaterials, 5, 237–40.

    Article  CAS  Google Scholar 

  81. Thombre, A. G. and Himmelstein, K. J. (1985) A simultaneous transport-reaction model for controlled drug delivery from catalysed bioerodible polymer matrices, AiChE J., 31, 759–66.

    Article  CAS  Google Scholar 

  82. Nguyen, T. H., Himmelstein, K. J. and Higuchi, T. (1986) Erosion of poly(ortho-ester) matrices in buffered aqueous solutions, J. Control. Rel., 4, 9–16.

    Article  Google Scholar 

  83. Nguyen, T. H., Higuchi, T. and Himmelstein, K. J. (1987) Erosion characteristics of catalyzed poly(ortho-ester) matrices, J. Control. Rel., 5, 1–12.

    Article  Google Scholar 

  84. Visscher, G. E., Robison, R. L. and Maulding, H. V. et al. (1985) Biodegradation and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules, J. Biomed. Mater. Res., 19, 349–65.

    Article  CAS  Google Scholar 

  85. Visscher, G. E., Robison, R. L. and Maulding, H. V. et al. (1986) Note: Biodegradation of and tissue reaction to poly(DL-lactide) microcapsules, J. Biomed. Mater. Res., 20, 667–76.

    Article  CAS  Google Scholar 

  86. Reed, A. M. and Gilding, D. K. (1979) Biodegradable polymers for use in surgery — poly(glycolic)/poly(lactic acid) homo- and copolymers. l, Polymer, 20, 1459–64.

    Article  Google Scholar 

  87. Fukuzaki, H., Yoshida, M., Asano, M. and Kumakura, M. (1989) Synthesis of copoly(DL-lactic acid) with relatively low molecular weight and in vitro degradation, Eur. Polym. J., 25, 1019–26.

    Article  CAS  Google Scholar 

  88. Vert, M. (1992) Poly(α-hydroxy acids) derived from lactic and glycolic acids, characteristics and degradation in aqueous media, in Fourth World Biomaterials Congress, Berlin, Germany, 24–28, April.

    Google Scholar 

  89. Mauduit, J. (1991) Nouveaux systèmes antibiotiques à libération controlée à base de gentamycine et de polymères biorésorbables, PhD thesis, University of Rouen, France.

    Google Scholar 

  90. Grizzi, I., Garreau, H., Li, S. M. and Vert, M. (1995) Hydrolytic degradation of devices based on poly(DL-lactic acid); size dependence, Biomaterials, 16, 305–311.

    Article  CAS  Google Scholar 

  91. Mauduit, J., Bukh, N. and Vert, M. (1993) Gentamycin/poly(lactic acid) blends aimed at sustained release local antibiotic therapy administered per-operatively: I. The case of gentamycin base and gentamycin sulfate in poly (DL-lactic acid) oligomers, J Control. Rel., 23, 209–20.

    Article  CAS  Google Scholar 

  92. Mauduit, J., Bukh, N. and Vert, M. (1993) Gentamycin/poly(lactic acid)blends aimed at sustained release local antibiotic therapy administered per-operatively: II. The case of gentamycin sulfate in high molecular weight poly(DL-lactic acid) and poly(L-lactic acid), J. Control. Rel., 23, 221–30.

    Article  CAS  Google Scholar 

  93. Mauduit, J., Bukh, N. and Vert, M. (1993) Gentamycin/poly(lactic acid) blends aimed at sustained release local antibiotic therapy administered per-operatively: III. The case of gentamycin sulfate in films of high and low molecular weight poly(DL-lactic acid), J. Control. Rel., 25, 43–49.

    Article  CAS  Google Scholar 

  94. Li, S. M. and Vert, M. In vitro degradation of coral/PLA50 bioresorbable material, to be published.

    Google Scholar 

  95. Vert, M. (1986) Biomedical polymers from chiral lactides and functional lactone — properties and applications, Macromol. Chem., Macromol. Symp., 6, 109–22.

    Article  CAS  Google Scholar 

  96. Fischer, E. W., Sterzel, H. J. and Wegner, G. (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Kolloid-Z. u. Z. Polymere, 251, 980–90.

    Article  CAS  Google Scholar 

  97. Carter, B. K. and Wilkes, G. L. (1984) Some morphological investigations on an absorbable copolyester biomaterial based on glycolic and lactic acid, in Polymers as Biomaterials, (eds S. W. Shalaby, A. S. Hoffman, B. D. Ratner and T. A. Horbett), Plenum Press, New York, pp. 67–92.

    Chapter  Google Scholar 

  98. Fredericks, R. J., Melveger, A. J. and Dolegiewtz, L. J. (1984) Morphological and structural changes in a copolymer of glycolide and lactide occurring as a result of hydrolysis, J. Polym. Sci.: Polym. Phys. Ed., 22, 57–66.

    Article  CAS  Google Scholar 

  99. Leeslag, J. W., Pennings, A. J. and Bos, R. R. M. et al. (1987) Bioresorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation, Biomaterials, 8, 311–4.

    Article  Google Scholar 

  100. Chu, C. C. (1981) Hydrolytic degradation of poly(glycolic acid): tensile strength and crystallinity study, J. Appl. Polym. Sci., 26, 1727–34.

    Article  CAS  Google Scholar 

  101. Chu, C. C. and Campbell, N. D. (1982) Scanning electron microscopic study of the hydrolytic degradation of poly (glycolic acid) suture, J. Biomed. Mater. Res., 16, 417–30.

    Article  CAS  Google Scholar 

  102. Browning, A. and Chu, C. C. (1986) The effect of annealing treatments on the tensile properties and hydrolytic degradative properties of poly(glycolic acid) sutures, J. Biomed. Mater. Res., 20, 613–32.

    Article  CAS  Google Scholar 

  103. Browning, A. and Chu, C. C. (1985) The effect of annealing treatments on the mechanical and degradative properties of poly(glycolic acid) sutures, in Proc. ACS Division of Polymeric Materials: Science and Engineering, Vol. 53, Fall Meeting 1985, Am Chem. Soc., Washington, DC, pp. 510–4.

    Google Scholar 

  104. Nakamura, T., Hitomi, S. and Watanabe, S. et al. (1989) Bioabsorption of polylactides with different molecular properties, J. Biomed Mater. Res., 23, 1115–30.

    Article  CAS  Google Scholar 

  105. Miller, R. A., Brady, J. M. and Cutright, D. E. (1977) Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios, J. Biomed. Mater. Res., 11, 711–9.

    Article  CAS  Google Scholar 

  106. Leeslag, J. W., Gogolewski, S. and Pennings, A. J. (1984) Bioresorbable materials of poly(L-lactide). V. Influence of secondary structure on the mechanical properties and hydrolability of poly(L-lactide) fibres produced by a dry-spinning method, J. Biomed. Mater. Res., 29, 2829–42.

    Google Scholar 

  107. Siemann, U. (1985) The influence of water on the glass transition of poly(DL-lactic acid), Thermochemica Acta., 85, 513–16.

    Article  CAS  Google Scholar 

  108. Grijpma, D. W., Nijenhuis, A. J. and Pennings, A. J. (1990) Synthesis and hydrolytic degradation behaviour of high-molecular-weight L-lactide and glycolide copolymers, Polymer, 31, 2201–6.

    Article  CAS  Google Scholar 

  109. Li, S. M. and Vert, M. (1994) Crystalline oligomeric stereocomplex as intermediate compound in racemic poly(DL-lactic acid) degradation, Polym. Inter., 33, 37–41.

    Article  CAS  Google Scholar 

  110. Cutright, D. E., Perez, B. and Beasley, J. D. et al. (1994) Degradation rates of polymers and copolymers of polylactic and polyglycolic acids, Oral Surg., 37, 142–52.

    Article  Google Scholar 

  111. Reed, A. M. and Gilding, D. K. (1981) Biodegradable polymers for use in surgery —poly(glycolic)/poly(lactic acid) homo- and copolymers: 2. in vitro degradation, Polymer, 22, 494–8.

    Article  CAS  Google Scholar 

  112. Zaikov, G. E. and Livshitz, V. S. (1987) The mechanism of chemical degradation of polymers. Part III. The anomaly in the hydrolysis of glycolide copolymers, Polym. Deg. Stabl., 17, 65–9.

    Article  CAS  Google Scholar 

  113. Zhu, K. J., Lin, X. Z. and Yang, S. L. (1990) Preparation, characterization and properties of polylactide (PLA) — poly(ethylene glycol) copolymers: a potential drug carrier, J. Appl. Polym. Sci., 39, 1–9.

    Article  CAS  Google Scholar 

  114. Kaetsu, I., Yoshida, M. and Asano, M. et al. (1987) Biodegradable implant composites for local therapy, J. Control. Rel., 6, 249–63.

    Article  CAS  Google Scholar 

  115. Zhu, J. M., Shao, Y. M., Zhang, S. Z. and Sui, W. M. (1991) Homopolymers and copolymers of glycolide and lactide, Journal of China Textile University (Eng. Ed.), 8, 57–61.

    Google Scholar 

  116. Ogawa, Y., Okada, H., Yamamoto, M. and Shimamoto, T. (1988) In vivo release profiles of leuprolide acetate from microcapsules prepared with polylactic acids or copoly(lactic/glycolic) acids and in vivo degradation of these polymers, Chem. Pharm. Bull., 36, 2576–81.

    Article  CAS  Google Scholar 

  117. Amarpreet, S. S. and Hubbell, J. A. (1990) Rapidly degraded terpolymers of DL-lactide, glycolide and ε-caprolactone with increased hydrophilicity by copolymerization with polyethers, J. Biomed. Mater. Res., 24, 1397–1411.

    Article  Google Scholar 

  118. Beck, L. R., Pope, V. Z. and Flowers, C. E. et al. (1983) Poly(DL-lactide/glycolide)/Norethisterone microcapsules: An injectable biodegradable contraceptive, Biology of Reproduction, 28, 186–95.

    Article  CAS  Google Scholar 

  119. Hyon, S. H., Jamshidi, K. and Ikada, Y. (1984) Melt spinning of poly(L-lactide) and hydrolysis of the fibre in vitro, in Polymers as Biomaterials, (eds S. W. Shalaby, A. S. Hoffman, B. D. Ratner and T. A. Horbett), Plenum Press, New York, pp. 51–65.

    Chapter  Google Scholar 

  120. Tunc, D. C. (1984) Absorbable bone fixation device containing poly(L-lactide), Eur. Pat. Appl. EP 108, 635.

    Google Scholar 

  121. Tunc, D. C., Rohovsky, M. W. and Jadhav, B. et al. (1985) Evaluation of body absorbable bone fixation devices, Polym. Mater. Sci. Eng., 53, 502–4.

    CAS  Google Scholar 

  122. Tunc, D. C. and Jadhav, B. (1988) Development of absorbable ultra-high-strength polylactide, Polym. Mater. Sci. Eng., 59, 383–7.

    CAS  Google Scholar 

  123. Gerlach K. L. and Eitenmüller, J. (1988) Undersuchungen zum biologischen abbau vershiedener polymère der α-hydroxysäuren, Dtsch Zahnarztl, 43, 41–4.

    CAS  Google Scholar 

  124. Eitenmüller, J., Muhr, G., Gerlach, K. L. and Schmickal, T. (1989) New semirigid and bioabsorbable osteosynthesis devices with a high molecular weight polylactide (an experimental investigation), J. Bioact. Compat. Polym., 4, 215–41.

    Article  Google Scholar 

  125. Vert, M., Chabot, F., Leray, J. and Christel, P. (1978) Nouvelles pièces d’ostéosynthèse, leur préparation et leur application, French Patent 78 29978.

    Google Scholar 

  126. Chawla, A. S. and Chang, T. M. S. (1985–6) In vivo degradation of poly(lactic acid) of different molecular weights, Biomed. Med. Dev. Art. Org., 13, 153–62.

    CAS  Google Scholar 

  127. Kwong, A. K., Chou, S., Sun, A. M. et al. (1986) In vitro and in vivo release of insulin from poly(lactic acid) microbeads and pellets, J. Control. Rel., 4, 47–62.

    Article  CAS  Google Scholar 

  128. Visscher, G. E., Pearson, J. E. and Fong, J. W. et al. (1988) Effect of particle size on the in vitro and in vivo degradation rates of poly(DL-lactide-co-glycolide) microcapsules, J. Biomed. Mater. Res., 22, 733–46.

    Article  CAS  Google Scholar 

  129. Törmälä, P., Mikkola, H. M. and Vasenius, J., et al. (1991) Strength retention of self-reinforced, absorbable polyglycolide rods in hydrolytic environment, Angew. Makromol. Chem., 185–186, 293–302.

    Article  Google Scholar 

  130. Zhu, J. H., Shen, Z. R., Wu, L. T. and Yang, S. L. (1991) In vitro degradation of polylactide and poly(lactide-co-glycolide) microspheres, J. Appl Polym. Sci., 43, 2099–106.

    Article  CAS  Google Scholar 

  131. Maulding, H. V., Tice, T. R. and Cowsar, D. R. et al. (1986) Biodegradable microcapsules: acceleration of polymeric excipient hydrolytic rate by incorporation of a basic medicament, J. Control Rel., 3, 103–17.

    Article  CAS  Google Scholar 

  132. Cha, Y. and Pitt, C. C. (1988) A one-week subdermal delivery system for L-methadone based on biodegradable microcapsules, J Control. Rel., 1, 69–78.

    Article  Google Scholar 

  133. Cha, Y. and Pitt, C. C. (1989) The acceleration of degradation-controlled drug delivery from polyester microspheres, J Control. Rel., 8, 259–65.

    Article  CAS  Google Scholar 

  134. Kishida, A., Yohioka, S., Takeda, Y. and Uchiyama, M. (1989) Formulation-assisted biodegradable polymer matrices, Chem. Pharm. Bull., 37, 1954–6.

    Article  CAS  Google Scholar 

  135. Bodmeier, R. and Chen, H. G. (1989) Evaluation of biodegradable poly(lactide) pellets prepared by direct compression, J. Pharm. Sci., 78, 819–22.

    Article  CAS  Google Scholar 

  136. Gupta, M. C. and Deshmukh, V. G. (1983) Radiation effects on poly(lactic acid), Polymer, 24, 827–30.

    Article  CAS  Google Scholar 

  137. Chu, C. C. (1985) Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery, Polymer, 26, 591–4.

    Article  CAS  Google Scholar 

  138. Spenlehauer, G., Vert, M., Benoit, J. P. and Boddaert, A. (1989) In vitro and in vivo degradation of poly(DL-lactide/glycolide) type microspheres made by solvent evaporation method, Biomaterials, 10, 557–63.

    Article  CAS  Google Scholar 

  139. Birkinshaw, C., Buggy, M., Henn, G. G. and Jones, E. (1992) Irradiation of poly(DL-lactide), Polym. Degr. Stabl, 38, 249–53.

    Article  CAS  Google Scholar 

  140. Chu, C. C. (1981) An in vitro study of the effect of buffer on the degradation of poly(glycolic acid) sutures, J. Biomed. Mater Res., 15, 19–27.

    Article  CAS  Google Scholar 

  141. Chu, C. C. (1981) The in vitro degradation of poly(glycolic acid) sutures — effect of pH, J. Biomed. Mater. Res., 15, 795–804.

    Article  CAS  Google Scholar 

  142. Chu, C. C. (1982) A comparison of the effect of pH on the biodegradation of two synthetic bioabsorbable sutures, Ann. Surg., 195, 55–9.

    Article  CAS  Google Scholar 

  143. Chu, C. C. (1982) The effect of pH on the in vitro degradation of poly(glycolide/lac-tide) copolymer absorbable sutures, J. Biomed. Mater. Res., 16, 117–24.

    Article  CAS  Google Scholar 

  144. Chu, C. C. and Moncrief, G. (1983) An in vitro evaluation of the stability of mechanical properties of surgical suture materials in various pH conditions, Ann. Surg., 198, 223–8.

    Article  CAS  Google Scholar 

  145. Makino, K., Ohshima, H. and Kondo, T. (1986) Mechanism of hydrolytic degradation of poly(L-lactide) microcapsules: effects of pH, ionic strength and buffer concentration, J. Microencapsulation, 3, 203–12.

    Article  CAS  Google Scholar 

  146. Makino, K., Ohshima, H. and Kondo, T. (1987) Effects of plasma proteins on degradation properties of poly(L-lactide) microcapsules, Pharm. Res., 4, 62–5.

    Article  CAS  Google Scholar 

  147. Miller, N. D. and Williams, D. F. (1984) The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain, Biomaterials, 5, 365–8.

    Article  CAS  Google Scholar 

  148. Ikada, Y., Hyon, S.-H. and Jamshidi, K. et al. (1985) Release of antibiotic from composites of hydroxyapatite and poly(lacticacid), J. Control. Rel., 2, 179–86, 1985.

    Article  CAS  Google Scholar 

  149. Suuronen, R., Pohjonen, T. and Taurio, R. et al. (1992) Strength retention of self-reinforced poly-L-lactide screws and plates: an in vivo and in vitro study, J. Mater. Sci.: Materials in Medicine, 3, 426–31.

    Article  CAS  Google Scholar 

  150. Chegini, N., Hay, D. L., von Fraunhofer J. A. and Masterson, B. J. (1988) A comparative scanning electron microscopic study on degradation of absorbable ligating clips in vivo and in vitro, J. Biomed. Mater. Res., 22, 71–9.

    Article  CAS  Google Scholar 

  151. Pitt, C. G., Chasalow, F. I. and Hibionada, Y. M. et al. (1981) Aliphatic polyesters. I. The degradation of poly (ε-caprolactone) in vivo, J. Appl. Polym. Sci., 26, 3779–87.

    Article  CAS  Google Scholar 

  152. Gabelnick, H. L. (1983) Biodegradable implants: alternative approaches, in Advances in Human Fertility and Reproductive Endocrinology: Vol. 2, Long Acting Steroid Contraception, Raven Press, New York, pp. 149–73.

    Google Scholar 

  153. Pitt, C.G. and Gu, Z. W. (1987) Modification of the rates of chain cleavage of poly (ε-caprolactone) and related polyesters in the solid state, J. Control Rel., 4, 283–92.

    Article  CAS  Google Scholar 

  154. Jarrett, P., Benedict, C. and Bell, J. P. et al. (1983) Mechanism of the biodegradation of polycaprolactone, Polym. Prepr., Amer. Chem. Soc, Div. Polym. Chem., 24, 32–3.

    CAS  Google Scholar 

  155. Jarrett, P., Benedict, C. and Bell, J. P. et al. (1985) Mechanism of the biodegradation of polycaprolactone, in Polymers as Biomaterials (eds S. W. Shalaby, A. S. Hoffman, B. D. Ratner and T. A. Horbett), Plenum pp. 181–92.

    Google Scholar 

  156. Fields, R. D., Rodriguez, F. and Finn, R. K. (1974) Microbial degradation of polyesters: polycaprolactone degraded by P. pullulans, J. Appl. Polym. Sci., 18, 3571–59.

    Article  CAS  Google Scholar 

  157. Grijmpa, D. W., Zondervan, G. J. and Pennings, A. J. (1991) High molecular weight copolymers of L-lactide and ε-caprolactone as biodegradable elastomeric implants materials, Polym. Bull., 25, 327–33.

    Article  Google Scholar 

  158. Song, C. X., Sun, H. F. and Feng, X. D. (1987) Microspheres of biodegradable block copolymer for long acting controlled delivery of contraceptives, Polym. J., 19, 485–91.

    Article  CAS  Google Scholar 

  159. Li, Y. X. (1988) Synthesis and studies of the controlled drug release system of biodegradable polymers as carriers, PhD Thesis, Peking University, China.

    Google Scholar 

  160. Fukuzaki, H., Yoshida, M., Asano, M. (1990) Synthesis of low molecular weight copoly (L-lactic acid/ε-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers, Polymer, 31, 2006–14.

    Article  CAS  Google Scholar 

  161. Cha, Y. and Pitt, C. G. (1990) The biodegradability of polyester blends, Biomaterials, 11, 108–12.

    Article  CAS  Google Scholar 

  162. Von Korsatko, W., Wabnegg, B., Braunegg, G. (1983) Poly-D-(−)-3–hydroxy-byttersäure (PHB) — ein biologisch abbaubarer Arzneistoffträger zur Liberations-verzögerung. 1. Mitt: Eintwicklung von parenteral applizierbaren Matrixtabletten zur Langzeitabgabe von Arzneistoffen, Pharm. Ind., 42, 525–7.

    Google Scholar 

  163. Grassie, N., Murray, E. J. and Holmes, P. A. (1984) The thermal degradation of poly (-(D)-β-hydroxy butyric acid). Part 1. Identification and quantitative analysis of products, Polym. Degr. Stab., 6, 47–61.

    Article  CAS  Google Scholar 

  164. Tanahashi, N. and Doi, Y. (1991) Thermal properties and stereoregularity of poly (3-hydroxybutyrate) prepared from optically active β-butyrolactone with a zinc-based catalyst, Macromolecules, 24, 5732–3.

    Article  CAS  Google Scholar 

  165. Bleoembergen, S., Holden, D. A., Bluhm, T. L. (1987) Synthesis of crystalline β-hydroxybutyrate/ β-hydroxyvalerate copolyesters by coordination polymerization of β-lactones, Macromolecules, 20, 3086–9.

    Article  Google Scholar 

  166. Mergaert, J., Wouters, A., Swings, J. and Kersters, K. (1992) Microbial flora involved in the biodegradation of polyhydroxyalkanoates, in Biodegradable Polymers and Plastics, (eds M. Vert et al.), Royal Society of Chemistry, Cambridge, pp. 95–100.

    Google Scholar 

  167. Yoshioka, S., Kishida, A. and Izumikawa, S. (1991) Base-induced polymer hydrolysis in poly (β-hydroxybutyrate/ ß-hydroxyvalerate) matrices, J. Control Rel., 16, 341–8.

    Article  CAS  Google Scholar 

  168. Welland, E. L., Stejny, J., Halter, A. and Keller, A. (1989) Selective degradation of chain folded single crystals of poly(β hydroxybutyrate), Polym. Commun., 30, 302–4.

    CAS  Google Scholar 

  169. Holmes, P. A. (1985) Applications of PHB — a microbially produced biodegradable thermoplastic, Phys. Technol., 16, 32–6.

    Article  CAS  Google Scholar 

  170. Stinson, M. W. and Merrick, J. M. (1974) Extracellular enzyme secretion by Pseudomonas lemoignei, J. Bacteriol., 119, 152–61.

    CAS  Google Scholar 

  171. Kemnitzer, J. E., McCarthy, S. P. and Gross, R. A. (1992) Poly (β-hydroxybutyrate) stereoisomers—a model study of the effects of stereochemical and morphological variables on polymer biological degradability, Macromolecules, 25, 5927–34.

    Article  CAS  Google Scholar 

  172. Kronenthal, R. L. (1974) Biodegradable polymers in medicine and surgery, in Polymers in Medicine and Surgery, (eds R. L. Kronenthal, Z. User and E. Martin), Plenum press, New York, pp. 119–37.

    Google Scholar 

  173. Von Korsatko, W., Wabnegg, B. and Tillian, H. M. et al. (1984) Poly-d-(−)-3–hydroxybyttersäuer (PHB) — ein biologisch abbaubarer Arzneistoffträger zur Liberations-Verzögerung. 3. Mitt: Gewebsverträglishkeitsstudien parenteral applizierbarer poly-d-(−)-3–hydroxybyttersäure-tabletten in Gewebekultur und in vivo, Pharm. Ind., 46, 952–4.

    CAS  Google Scholar 

  174. Bissery, M. C., Varelote, F. and Thies, C. (1984) In vitro and in vivo evaluation of CCNU-loaded microspheres prepared from poly ((±) lactide) and poly (β-hydroxybutyrate), in Microspheres and Drug Therapy. Pharmaceutical and Medical Aspects (eds S. S. Davis, L. Illum, J. G. McVie and E. Tomlinson), Elsevier Science Publishers, Amsterdam, pp. 217–27.

    Google Scholar 

  175. Millar, N. D. and Williams, D. F. (1987) On the biodegradation of poly (ß-hydroxybutyrate) (PHB) homopolymer and poly (ß-hydroxybutyrate/hydroxy-valerate) copolymers, Biomaterials, 8, 129–37.

    Article  Google Scholar 

  176. Saito, T., Tomita, K., Juni, K. and Ooba, K. (1991) In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat, Biomaterials, 12, 309–12.

    Article  CAS  Google Scholar 

  177. Augurt, T. A., Rosensaft, M. N. and Perciaccante, V. A. (1976) Surgical sutures of unsymmetrically substituted 1,4-dioxane-2, 5-diones, US Patent 3, 960, 152.

    Google Scholar 

  178. Augurt, T. A., Rosensaft, M. N. and Perciaccante, V. A. (1977) Polymers of unsymmetrically substituted 1, 4-dioxane-2, 5-diones, US Patent 4,033,938.

    Google Scholar 

  179. Rosensaft, M.N. and Webb, R. L. (1981) Synthetic polyester surgical articles, US Patent 4,243,775.

    Google Scholar 

  180. Rosensaft, M. N. and Webb, R. L. (1981) Synthetic polyester surgical articles, US Patent 4,300,565.

    Google Scholar 

  181. Katz, A. R., Mukherjee, D. P., Kaganov, A. L. and Gordon, S. (1985) A new synthetic monofilament absorbable suture made from polytrimethylene carbonate, Surg. Gynecol. Obstet., 161, 213–22.

    CAS  Google Scholar 

  182. Sanz, L. E., Patterson, J. A. and Kamath, R. et al. (1988) Comparison of MAXON suture with VICRYL, chromic CATGUT and PDS sutures in facial closure in rats, Obstet. Gynecol., 71, 418–22.

    CAS  Google Scholar 

  183. Doddi, N., Versfelt, C. C. and Wasserman, D. (1976) Synthetic absorbable surgical devices of polydioxanone, US Patent 4,052,988.

    Google Scholar 

  184. Greisler, H. P., Ellinger, J. and Schwarcz, T. H. et al. (1987) Arterial regeneration over polydioxanone prostheses in the rabbit, Arch. Surg., 122, 715–21.

    Article  CAS  Google Scholar 

  185. Cornah, J. and Wallace, J. (1988) Polydioxanone (PDS): a new material for internal suspension and fixation, B. J. Oral and Maxillofacial Surg., 26, 250–54.

    Article  CAS  Google Scholar 

  186. Biardzka, B. and Kaluzny, J. (1988) Experimental and clinical investigations on the suitability of polydioxanone threads for cerclage of the eyeball, Ophthalmologica (Basel), 197, 47–50.

    Article  CAS  Google Scholar 

  187. Schoetz, D. J. J. R., Coller, J. A. and Veidenheimer, M. C. (1988) Closure of abdominal wounds with polydioxanone: a prospective study, Arch. Path. Lab. Med., 123, 72–4.

    Google Scholar 

  188. Lizuka, T., Mikkonen, P., Paukku, P. and Lindqvist, C. (1991) Reconstruction of orbital floor with polydioxanone plate, Inter. J. Oral Maxillofacial Surg., 20, 83–7.

    Article  Google Scholar 

  189. Myers, J. L., Campbell, D. B. and Waldhausen, J. A. (1986) The use of absorbable monofilament polydioxanone suture in pediatric cardiovascular operations, Journal of Thoracic and Cardiovascular Surgery, 92, 771–5.

    CAS  Google Scholar 

  190. Miles, J. S. (1986) Use of polydioxanone absorbable monofilament sutures in orthopeadic surgery, Orthopeadics (Thorofare), 9, 1533–6.

    CAS  Google Scholar 

  191. Ethicon Inc., (1980) Absorbable polymer—drug compositions, UK Patent 1, 573, 459.

    Google Scholar 

  192. Schaefer, C. J., Colombani, P. M. and Geelhoel, G. W. (1982) Absorbable ligating clips, Surg. Gynecol. Obstet., 154, 513–6.

    CAS  Google Scholar 

  193. Heller, J., Helwing, R. F., Baker, R. W. and Tuttle, M. W. (1983) Controlled release of water soluble macromolecules from bioerodible hydrogels, Biomaterials, 4, 262–6.

    Article  CAS  Google Scholar 

  194. Heller, J. (1985) Water soluble polyesters, US Patent 4, 502, 976.

    Google Scholar 

  195. Baker, R. W., Tuttle, M. W. and Helwing, R. F. (1984) Novel erodible polymers for the delivery of macromolecules, Pharm. Technol., 26–30 Feb.

    Google Scholar 

  196. Han, Y. K., Edelman, P. G. and Huang, S. J. (1988) Synthesis and characterization of crosslinked polymers for biomedical composites, J. Macromol. Sci.-Chem., A25, 847–69.

    Google Scholar 

  197. Sawhney, A. S., Pathak, C. P. and Hubbell, J. A. (1993) Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxyacid) diacrylate macromers, Macromolecules, 26, 581–7.

    Article  CAS  Google Scholar 

  198. Pramanick, D. and Ray, T. T. (1988) Synthesis and biodegradation of copolyesters, from citric acid and glycerol, Polym. Bull., 19, 365–70.

    Article  CAS  Google Scholar 

  199. Pramanick, D. and Ray, T. T. (1987) Synthesis and biodegradation of polymers derived from aspartic acid, Biomaterials, 8, 407–10.

    Article  CAS  Google Scholar 

  200. Braud, C., Vert, M. and Lenz, R. W. (1981) Polyelectrolytical properties of poly-ß-malic acid and its partially benzylated derivatives, Proc. of IUPAC 27th International Symposium on Macromolecules, Strasbourg, France, 1981, Proceedings B5, Vol. II, pp. 1086–89.

    Google Scholar 

  201. Braud, C., Bund, C., Garreau, H. and Vert, M. (1983) Evidence of the amphiphilic structure of partially hydrogenolyzed poly(β-malic acid benzylester), Polym. Bull., 9, 198–203.

    Article  CAS  Google Scholar 

  202. Braud, C. and Vert, M. (1984) Poly(β-malic acid) as a source of polyvalent drug carriers: possible effects of hydrophobic substituents in aqueous media, in Polymers as Biomaterials (eds S. W. Shalaby, A. S. Hoffman, B. D. Ratner and T. A. Horben), Plenum, pp. 1–15.

    Chapter  Google Scholar 

  203. Caron, A., Braud, C., Bunel, C. and Vert, M. (1990) Blocky structure of copolymers obtained by Pd/C-catalyzed hydrogenolysis of benzyl protecting groups as shown by sequence-selective hydrolytic degradation in poly(β-malic acid) derivatives, Polymer, 31, 1797–802.

    Article  CAS  Google Scholar 

  204. Guerin, P., Vert, M., Braud, C. and Lenz, R. W. (1985) Optically active poly(ß-malic acid), Polym. Bull., 14, 187–93.

    Article  CAS  Google Scholar 

  205. Braud, C., Bunel, C. and Vert, M. (1985) Poly(β-malic acid): anew polymeric drug carrier, evidence for degradation in vitro, Polym. Bull., 13, 293–9.

    CAS  Google Scholar 

  206. Braud, C., Caron, A., Francillette, J., Guerin, P. and Vert, M. (1988). Poly (ß-malic acid) stereocopolymers: structural characteristics and degradation in aqueous media, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 29, 600–1.

    CAS  Google Scholar 

  207. Braud, C. and Vert, M. (1992) Degradation of poly(β-malic acid) — monitoring of oligomers formation by aqueous SEC and HPCE, Polym. Bull., 29, 177–83.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, S., Vert, M. (1995). Biodegradation of aliphatic polyesters. In: Scott, G., Gilead, D. (eds) Degradable Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0571-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0571-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4253-6

  • Online ISBN: 978-94-011-0571-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics