Skip to main content

Abstract

Neurons are always found in intimate apposition to glia, regardless of the region of the nervous system examined or the species of vertebrate concerned (Reichenbach and Robinson, 1995). This tight correspondence strongly suggests that these two cell types are interdependent; this suggestion has indeed been amply confirmed by a large and diverse body of evidence. Different types of glia are specialized for different purposes: astrocytes provide metabolic support to neurons and maintain homeostasis of the extracellular environment; microglia mediate response to tissue damage and phagocytose neuronal debris; while oligodendrocytes on the other hand wrap axons and neuronal somata in an insulating sheath to limit the lateral, and to accelerate the longitudinal, conduction of electrical impulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu El-Asrar, A.M., Morse, P.H., Maimone, D. et al. (1992) MK-801 protects retinal neurons from hypoxia and the toxicity of glutamate and aspartate. Investigative Ophthalmology and Visual Science ,33, 3463–8.

    PubMed  CAS  Google Scholar 

  • Anderson, D.H., Guèrin, C.J., Erickson, P.A. et al. (1986) Morphological recovery in the reattached retina. Investigative Ophthalmology and Visual Science ,27, 168–83.

    PubMed  CAS  Google Scholar 

  • Ashall, F. and Goate, A.M. (1994) Role of the (β-amyloid precursor protein in Alzheimer’s disease. Trends in Biochemical Sciences ,19, 42–6.

    Article  PubMed  CAS  Google Scholar 

  • Attwell, D., Brew, H. and Mobbs, P. (1986) Electrophysiology of the Müller cell network in the isolated axolotl retina. Journal of Physiology (London) ,369, 33P.

    Google Scholar 

  • Biedermann, B., Eberhardt, W. and Reichelt, W. (1994) GABA uptake into isolated retinal Müller glial cells of the guinea pig detected electrophysiologically. Neuroreport ,5, 438–40.

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A. and Dahl, D. (1979) The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Experimental Eye Research ,28, 63–9.

    Article  PubMed  CAS  Google Scholar 

  • Borgula, G.A., Karwoski, C.J. and Steinberg, R.H. (1989) Light-evoked changes in extracellular pH in frog retina. Vision Research ,29, 1069–77.

    Article  PubMed  CAS  Google Scholar 

  • Brew, H. and Attwell, D. (1987) Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature ,327, 707–9.

    Article  PubMed  CAS  Google Scholar 

  • Brew, H., Gray, P.T.A., Mobbs, P. et al. (1986) Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature ,324, 466–8.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, C.D.B., Alvarez, R.A., Fong, S.-L. et al. (1984) Visual cycle in the mammalian eye. Vision Research ,24, 1581–94.

    Article  PubMed  CAS  Google Scholar 

  • Buchi, E.R. (1992) Cell death in rat retina after pressure-induced ischaemia-reperfusion insult: electron microscopic study. II. Outer nuclear layer. Japanese Journal of Ophthalmology ,36, 62–8.

    PubMed  CAS  Google Scholar 

  • Bunt-Milam, A.H. and Saari, C.J. (1983) Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. Journal of Cell Biology ,97, 703–12.

    Article  PubMed  CAS  Google Scholar 

  • Burke, J.M. (1989) Growth in retinal glial cells in vitro is affected differentially by two types of cell contact-mediated interactions. Experimental Cell Research ,180, 13–9.

    Article  PubMed  CAS  Google Scholar 

  • Caley, D.W., Johnson, C. and Liebelt, R.A. (1972) The postnatal development of the retina in the normal and rodless CBA mouse: a light and electron microscopic study. American Journal of Anatomy ,133, 179–212.

    Article  PubMed  CAS  Google Scholar 

  • Chao, T.I., Henke, A., Reichelt, W., et al. (1994) Characterization and possible functional role(s) of K+ channels in rabbit retinal Müller (glial) cells. Pflüger’s Archiv ,426, 51–60.

    Article  CAS  Google Scholar 

  • Das, S.R., Bhardwaj, N. and Gouras, P. (1990) Synthesis of retinoids by human retinal pigment epithelium and transfer to rod outer segments. Biochemical Journal ,268, 201–6.

    PubMed  CAS  Google Scholar 

  • Das, S.R., Bhardwaj, N., Kjedbye, H. and Gouras, P. (1992) Muller cells of chicken retina synthesize 11-cis-retinol. Biochemical Journal ,285, 907–13.

    PubMed  CAS  Google Scholar 

  • De Jong, P.T.V.M., Zrenner, E., Van Meel, G.J. et al. (1991) Mizuo phenomenon in X-linked retinoschisis. Pathogenesis of the Mizuo phenomenon. Archives of Ophthalmology ,109, 1104-8.

    Google Scholar 

  • De Oliveira Castro, G. and Martins-Ferreira, H. (1970) Deformations and thickness variations accompanying spreading depression in the retina. Journal of Neurophysiology ,33, 891–900.

    Google Scholar 

  • Dreher, Z., Robinson, S.R. and Distler, C. (1992) Muller cells in vascular and avascular retinae: a survey of seven mammals. Journal of Comparative Neurology ,323, 59–80.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B. (1973) Glial uptake of taurine in the rabbit retina. Brain Research ,60, 512–6.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B. (1977) Glial and neuronal uptake of GABA, glutamic acid, glutamine, and glutathione in the rabbit retina. Experimental Eye Research ,25, 221–34.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, P.A., Fisher, S.K., Anderson, D.H. et al. (1983) Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Investigative Ophthalmology and Visual Science ,24, 927–42.

    PubMed  CAS  Google Scholar 

  • Fadool, J.M. and Linser, P.J. (1993) 5A11 antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina. Developmental Dynamics ,196, 252–62.

    Article  PubMed  CAS  Google Scholar 

  • Faff-Michalak, L., Reichenbach, A., Dettmer, D. et al. (1994) K+-, hypoosmolarity-, and NH4+-induced taurine release from cultured rabbit Müller cells: role of Na+ and C1-ions and relation to cell volume changes. Glia ,10, 114–20.

    Article  PubMed  CAS  Google Scholar 

  • Fain, G.L., Gold, G.H. and Dowling, J.E. (1976) Receptor coupling in the toad retina. Cold Spring Harbor Symposia on Quantitative Biology ,40, 547–61.

    Article  PubMed  CAS  Google Scholar 

  • Flannery, J.G., O’Day, W., Pfeffer, B.A. et al. (1990) Uptake, processing and release of retinoids by cultured human retinal pigment epithelium. Experimental Eye Research ,51, 717–28.

    Article  PubMed  CAS  Google Scholar 

  • Frishman, L.J. and Steinberg, R.H. (1989) Lightevoked increases in [K+]0 in proximal portion of the dark-adapted cat retina. Journal of Neurophysiology ,61, 1233–43.

    PubMed  CAS  Google Scholar 

  • Fujimoto, M. and Tomita, T. (1979) Reconstruction of the slow PHI from the rod potential. Investigative Ophthalmology and Visual Science ,18, 1090–3.

    Google Scholar 

  • Guèrin, C.J., Anderson, D.H. and Fisher, S.K.(1990) Changes in intermediate filament immunolabelling occur in response to retinal detachment and reattachment in primates. Investigative Ophthalmology and Visual Science ,31, 1474–82.

    PubMed  Google Scholar 

  • Hampson, E.C.G.M., Weiler, R. and Vaney, D.I. (1994) pH-gated dopaminergic modulation of horizontal cell gap junctions in mammalian retina. Proceedings of the Royal Society, London, B ,255, 67–72.

    Article  CAS  Google Scholar 

  • Hiroi, K., Yamamoto, F. and Honda, Y. (1994) Intraretinal study of cat electroretinogram during retinal ischemia-reperfusion with extracellular K+ concentration microelectrodes. Investigative Ophthalmology and Visual Science ,35, 656–63.

    PubMed  CAS  Google Scholar 

  • Hockenbery, D.M., Oltvai, Z.N., Yin, X.M. et al. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell ,75, 241–51.

    Article  PubMed  CAS  Google Scholar 

  • Hori, S. and Mukai, N. (1980) Ultrastructural lesions of retinal arteries in streptozotocininduced diabetic rats. Japanese Journal of Ophthalmology ,24, 267–77.

    Google Scholar 

  • Johnson, N.F. (1977) Retinal glycogen content during ischaemia. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologic ,203, 271–82.

    Article  CAS  Google Scholar 

  • Karwoski, C.J. and Proenza, L.M. (1977) Relationship between Müller cell responses, a local transretinal potential, and potassium flux. Jour nal of Neurophysiology ,40, 244–59.

    CAS  Google Scholar 

  • Karwoski, C.J. and Proenza, L.M. (1987) Sources and sinks of light-evoked Δ[K+]o in the vertebrate retina. Canadian Journal of Physiology and Pharmacology ,65, 1009–17.

    Article  PubMed  CAS  Google Scholar 

  • Karwoski, C.J., Frambach, D.A. and Proenza, L.M. (1985) Laminar profile of resistivity in frog retina. Journal of Neurophysiology ,54, 1607–19.

    PubMed  CAS  Google Scholar 

  • Karwoski, C.J., Lu, H.-K. and Newman, E.A. (1989) Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells. Science ,244, 578–80.

    Article  PubMed  CAS  Google Scholar 

  • Kljavin, I.J. and Reh, T.A. (1991) Müller cells are a preferred substrate for in vitro neurite extension by rod photoreceptor cells. Journal of Neuroscience ,11, 2985–94.

    PubMed  CAS  Google Scholar 

  • Korte, G.E., Hageman, G.S., Pratt, D.V. et al. (1992) Changes in Müller cell plasma membrane specializations during subretinal scar formation in the rabbit. Experimental Eye Research ,55, 155–62.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, T. and Cogan, D.G. (1961) Retinal glycogen. Archives of Ophthalmology ,66, 680–8.

    Article  PubMed  CAS  Google Scholar 

  • Laqua, H. and Machemer, R. (1975) Glial cell proliferation in retinal detachment (massive preretinal proliferation). Americal Journal of Ophthalmology ,80, 602–18.

    CAS  Google Scholar 

  • Lombardini, J.B. (1991) Taurine: retinal function. Brain Research Reviews ,16, 151–69.

    Article  PubMed  CAS  Google Scholar 

  • Long, K.O., Fisher, S.K., Fariss, R.N. and Anderson, D.H. (1986) Disc shedding and autophagy in the cone-dominant ground squirrel retina. Experimental Eye Research ,43, 193–205.

    Article  PubMed  CAS  Google Scholar 

  • Magelhaes, M.M. and Coimbra, A. (1970) Electron microscope radioautographic study of glycogen synthesis in the rabbit retina. Journal of Cell Biology ,47, 263–75.

    Article  Google Scholar 

  • Mano, T. and Puro, D.G. (1990) Phagocytosis by human retinal glial cells in culture. Investigative Ophthalmology and Visual Science ,31, 1047–55.

    PubMed  CAS  Google Scholar 

  • Mantych, G.J., Hageman, G.S. and Devascar, S.D. (1993) Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology ,133, 600–7.

    Article  PubMed  CAS  Google Scholar 

  • McGrail, K.M. and Sweadner, K.J. (1989) Complex expression patterns for Na+,K+-ATPase isoforms in retina and optic nerve. European Journal of Neuroscience, 2 ,170–6.

    Article  Google Scholar 

  • Miller, B., Miller, H. and Ryan, S.J. (1986) Experimental epiretinal proliferation induced by intra-vitreal red blood cells. American Journal of Ophthalmology ,79, 613–21.

    Google Scholar 

  • Miller, R.F. and Dowling, J.E. (1970) Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. Journal of Neurophysiology ,33, 323–41.

    PubMed  CAS  Google Scholar 

  • Moore, C.L. and Gruberg, E.R. (1974) The distribution of succinic semialdehyde dehydrogenase in the brain and retina of the tiger salamander. Brain Research ,67, 467–78.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., Miller, W.H. and Tomita, T. (1976) Müller cell function during spreading depression in frog retina. Proceedings of the National Academy of Sciences of the USA ,73, 1351–4.

    Article  PubMed  CAS  Google Scholar 

  • Moscona, A.A. (1983) On glutamine synthetase, carbonic anhydrase and Müller glia in the retina. Progress in Retinal Research, 2 ,111–35.

    Article  CAS  Google Scholar 

  • Müller, H. (1851) Zur Histologic der Netzhaut. Zeitschrift für Wissenschaftliche Zoologie ,3, 234–7.

    Google Scholar 

  • Muresan, Z. and Besharse, J.C. (1993) D2-like dopamine receptors in amphibian retina: localization with fluorescent ligands. Journal of Comparative Neurology ,331, 149–60.

    Article  PubMed  CAS  Google Scholar 

  • Neal, M.J. and Iversen, L.L. (1972) Autoradiographic localization of 3H-GABA in rat retina. Nature ,235, 217–8.

    Article  CAS  Google Scholar 

  • Newman, E.A. (1984) Regional specialization of retinal glial cell membrane. Nature ,309, 155–7.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. (1985) Voltage-dependent calcium and potassium channels in retinal glial cells. Nature ,317, 809–11.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. (1987) Distributtion of potassium conductance in mammalian Müller (glial) cells. A comparative study. Journal of Neuroscience, 7 ,2423–32.

    PubMed  CAS  Google Scholar 

  • Newman, E.A. (1988) Potassium conductance in Müller cells of fish. Glia ,1, 275–81.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. Journal of Neuroscience ,13, 3333–45.

    PubMed  CAS  Google Scholar 

  • Newman, E.A. (1994) A physiological measure of carbonic anhydrase in Müller cells. Glia ,11, 291–9.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. and Astion, M.L. (1991) Localization and stoichiometry of electrogenic sodium bicarbonate cotransport in retinal glial cells. Glia ,4, 424–8.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. and Odette, L.L. (1984) Model of electroretinogram b-wave generation: a test of the K+ hypothesis. Journal of Neurophysiology ,51, 164–82.

    PubMed  CAS  Google Scholar 

  • Newman, E.A., Frambach, D.A. and Odette, L.L. (1984) Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science ,225, 1174–5.

    Article  PubMed  CAS  Google Scholar 

  • Nilius, B. and Reichenbach, A. (1988) Efficient K+ buffering by mammalian retinal glial cells is due to cooperation of specialized ion channels. Pflügers Archiv ,411, 654–60.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., Ho, O.L. and Rhee, V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Experimental Brain Research ,14, 61–76.

    Article  CAS  Google Scholar 

  • Olney, J.W., DeGubareff, T. and Collins, J.F. (1980) Stereospecifity of the gliotoxic and anti-neurotoxic actions of alpha-aminoadipate. Neuroscience Letters ,19, 277–82.

    Article  PubMed  CAS  Google Scholar 

  • Osborne, N.N., Block, F. and Sontag, K.-H. (1991) Reduction of ocular blood flow results in glial fibrillary acidic protein (GFAP) expression in rat retinal Müller cells. Visual Neuroscience ,7, 637–9.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, B., Grosche, J., Reichenbach, A. and Hamprecht, B. (1994) Immunocytochemical demonstration of glycogen phosphorylase in Müller (glial) cells of the mammalian retina. Glia ,12, 62–7.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J.W. (1994) A ‘radial’ view of cerebral ischemic injury. Progress in Neurobiology ,42, 441–8.

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate, C. and Tsacopoulos, M. (1991) Glial (Müller) cells take up and phosphorylate [3H]2-deoxy-F5D-glucose in a mammalian retina. Neuroscience Letters ,122, 241–4.

    Article  PubMed  CAS  Google Scholar 

  • Pow, D.H. and Crook, D.K. (1994) Rapid postortem changes in the cellular distribution of amino acid transmitters in retina. Proceedings of the Australian Neuroscience Society ,5, 159.

    Google Scholar 

  • Pow, D.W. and Robinson, S.R. (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience ,60, 355–66.

    Article  PubMed  CAS  Google Scholar 

  • Quian, H., Malchow, R.P. and Ripps, H. (1993) The effects of lowered extracellular sodium on 7-aminobutyric acid (GABA-) induced currents of Müller (glial) cells of the skate retina. Cellular and Molecular Neurobiology ,13, 147–58.

    Article  Google Scholar 

  • Reichenbach, A. (1989) Attempt to classify glial cells by means of their process specialization using the rabbit retinal Müller cell as an example of cytotopographic specialization of glial cells. Glia ,2, 250–9.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A. and Eberhardt, W. (1988) Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane. Glia ,1, 191–7.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A. and Robinson, S.R. (1995) Epen-dymoglia and ependymoglia-like cells, in Neuroglia Cells (eds B. Ransom and H. Kettenmann) (in press).

    Google Scholar 

  • Reichenbach, A. and Wohlrab, F. (1985) Effects of α-aminoadipic acid on the glutamate-isolated PHI of the rabbit electroretinogram. Documenta Ophthalmologica ,59, 359–64.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Hagen, E., Schippel, K. and Eberhardt, W. (1988) Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells. Structure, ultrastructure, and (3H)-ouabain binding sites. Zeitschrift für mikroskopisch-anatomische Forschung ,102, 897–12.

    PubMed  CAS  Google Scholar 

  • Reichenbach, A., Schneider, H., Leibnitz, L. et al. (1989) The structure of rabbit retinal Müller (glial) cells is adapted to the surrounding retinal layers. Anatomy and Embryology ,180, 71–9.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Henke, A., Eberhardt, W. et al. (1992) K+ regulation in retina. Canadian Journal of Physiology and Pharmacology ,70 (Suppl.), S239–47.

    Article  Google Scholar 

  • Reichenbach, A., Stolzenburg, J.-U., Eberhardt, W. et al. (1993) What do retinal Müller (glial) cells do for their neuronal ‘small siblings’? Journal of Chemical Neuroanatomy ,6, 201–13.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Stolzenburg, J.-U., Wolburg, H. et al. (1995) Hepatic retinopathia. I. Morphological findings. Acta Neuropathol. (in press).

    Google Scholar 

  • Reichenbach, A., Ziegert, M., Schnitzer, J. and Pritz-Hohmeir, S. (1994) Development of the rabbit retina. V. Columnar units. Developmental Brain Research ,79, 72–84.

    Article  PubMed  CAS  Google Scholar 

  • Rentsch, F.J. (1979) Preretinal proliferation of glial cells after mechanical injury of the rabbit retina. Albrecht von Graefe’s Archiv für klinische und experimentelle Ophthalmologic ,188, 79–87.

    Article  Google Scholar 

  • Ripps, H. and Witkovsky, P. (1985) Neuron-glia interaction in the brain and retina, in Progress in Retinal Research ,Vol. 4 (eds N.N. Osborne and G.J. Chader), Pergamon Press, Oxford, New York, pp.181–219.

    Google Scholar 

  • Ripps, H., Mehaffey. L. III and Siegel, I.M. (1981) ‘Rapid regeneration’ in the cat retina. A case for spreading depression. Journal of General Physiology ,77, 335–46.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S.R. (1991) Development of the mammalian retina, in Neuroanatomy of the Visual Pathways and their Development (eds B. Dreher and S.R. Robinson), Vol. 3 of Vision and Visual Dysfunction (series ed. J.R. Cronly-Dillon), Macmillan, London, pp.69–128.

    Google Scholar 

  • Robinson, S.R., Hampson. E.C.G.M., Munro, M.N. and Vaney, D.I. (1993) Unidirectional coupling of gap junctions between neuroglia. Proceedings of the Australian Neuroscience Society ,3, 167.

    Google Scholar 

  • Roque, R.S. and Caldwell, R.B. (1990) Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia ,3, 464–75.

    Article  PubMed  CAS  Google Scholar 

  • Sarantis, M. and Mobbs, P. (1992) The spatial relationship between Müller cell processes and the photoreceptor output synapse. Brain Research ,584, 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Sarthy, P.V. (1983) Release of (3H) γ-aminobutyric acid from glial (Müller) cells of the rat retina: effects of K+, veratridine, and ethylenediamine. Journal of Neuroscience ,3, 2494–503.

    PubMed  CAS  Google Scholar 

  • Sarthy, P.V. and Lam, D.M.K. (1978) Biochemical studies of isolated glial (Müller) cells from the turtle retina. Journal of Cell Biology ,78, 675–84.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, E.A. (1993) L-Glutamate conditionally modulates the K+ current of Müller glial cells. Neuron ,10, 1141–9.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, E.A. and Tachibana, M. (1990) Electrophysiology of glutamate and sodium cotransport in a glial cell of the salamander retina. Journal of Physiology (London) ,426, 43–80.

    CAS  Google Scholar 

  • Steinberg, R.H., Oakley, B., II and Niemeyer, G. (1980) Light-evoked changes in [K+]0 in retina of intact cat eye. Journal of Neurophysiology ,44, 897–921.

    PubMed  CAS  Google Scholar 

  • Stirling, C.E. and Sarthy, P.V. (1985) Localization of the Na-K pump in turtle retina. Journal of Neurocytology ,14, 33–47.

    Article  PubMed  CAS  Google Scholar 

  • Stolzenburg, J.-U., Haas, J., Härtig, W. et al. (1992) Phagocytosis of latex beads by rabbit retinal Müller (glial) cells in vitro. Journal für Hirnforschung ,33, 557–64.

    PubMed  CAS  Google Scholar 

  • Szamier, R.B., Ripps, H. and Chappell, R.L. (1981) Changes in ERG b-wave and Müller cell structure induced by α-aminoadipic acid. Neuroscience Letters ,21, 307–12.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, M.T., Liu, K.N. and Radtke, N.R. (1990) Facilitated ERG recovery in taurine-treated bovine eyes, an ex vivo study. Brain Research ,509, 153–5.

    Article  PubMed  CAS  Google Scholar 

  • Tout, S., Chan-Ling, T., Hollander, H. and Stone, J. (1993) The role of Müller cells in the formation of the blood retinal barrier. Neuroscience ,55, 291–301.

    Article  PubMed  CAS  Google Scholar 

  • Uga, S. and Smelser, G.K. (1973) Comparative study of the fine structure of retinal Müller cells in various vertebrates. Investigative Ophthalmology ,12, 434–48.

    PubMed  CAS  Google Scholar 

  • Van Harreveld, A. (1982) Swelling of Müller fibers in the chicken retina. Journal of Neurobiology ,13, 519–36.

    Article  PubMed  Google Scholar 

  • Wagner, H.-J., Luo, B.-G., Ariano, M.A. et al. (1993) Localization of D2 dopamine receptors in vertebrate retinae with anti-peptide antibodies. Journal of Comparative Neurology ,331, 469–81.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H., Tomita, H., Ishiguro, S.-I. and Tamai, M. (1994) Suppression of phosphate-activated glutaminase activity in ischemic rat retinas. Investigative Ophthalmology and Visual Science ,35, 1866.

    Google Scholar 

  • Witkovsky, P. and Schüte, M. (1991) The organization of dopaminergic neurons in vertebrate retinas. Visual Neuroscience, 7 ,113–24.

    Article  PubMed  CAS  Google Scholar 

  • Wolburg, H. and Berg, K. (1988) Distribution of orthogonal arrays of particles in the Müller cell membrane of the mouse retina. Glia ,1, 246–52.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Hara, S. and Tamai, M. (1990) Immunohistochemical localization of cathepsin D in ocular tissues. Investigative Ophthalmology and Visual Science ,31, 1217–23.

    PubMed  CAS  Google Scholar 

  • Young, R.W. (1984) Cell death during differentiation of the retina in the mouse. Journal of Comparative Neurology ,229, 362–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reichenbach, A., Robinson, S.R. (1995). The involvement of Müller cells in the outer retina. In: Djamgoz, M.B.A., Archer, S.N., Vallerga, S. (eds) Neurobiology and Clinical Aspects of the Outer Retina. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0533-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0533-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4237-6

  • Online ISBN: 978-94-011-0533-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics