Skip to main content

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

The Photosystem I (PS I) complex in cyanobacteria functions most typically as a light-driven, cytochrome c 6:ferredoxin oxidoreductase. The adaptability of cyanobacteria to conditions of nutrient availability allows cytochrome c 6 to be replaced by plastocyanin when copper is plentiful, and ferredoxin to be replaced by flavodoxin when iron is limiting. These changes, however, do not lead to any known alterations in the polypeptide composition of the membrane-bound PS I complex. This multiprotein complex incorporates all of the biochemical machinery required to produce efficient charge separation across the thylakoid membrane in a process that culminates in the conversion of a red photon to chemical free energy. The membrane-bound components which comprise the complex include an array of ∼ 110 antenna chlorophyll a molecules to provide a large optical cross-section to incoming photons, a series of inorganic and organic cofactors to carry out the acts of charge separation and charge stabilization, and a matrix of eleven polypeptides to provide ligands to the photoactive components. These components are arranged in a motif believed to be shared by all photochemical reaction centers: in PS I a chlorophyll (a) dimer serves as the primary electron donor; a chlorophyll (a) monomer serves as the primary electron acceptor; and a quinone (phylloquinone) serves as the intermediate electron acceptor. Other common features include the presence of a protein (hetero)dimer (PsaA and PsaB), which binds the antenna chlorophylls, the electron donor and acceptor chlorophylls, and the two quinone molecules. This shared photochemical motif is broken by the inter-polypeptide iron-sulfur cluster Fx, which occupies the same relative position as the non-heme iron in Type-II (quinone-type) reaction centers, but which is redox active in Type I (iron-sulfur type) reaction centers. The addition of two iron-sulfur clusters, FB and FA, located on a separate polypeptide, PsaC, provides a path for the electrons out of the membrane phase and to the stromal phase, allowing ferredoxin to be reduced with high quantum efficiency. The other PS I polypeptides serve ancillary roles in stabilizing PsaC and docking ferredoxin or flavodoxin (PsaD), in enhancing ferredoxin reduction and allowing for cyclic electron flow (PsaE), and in forming trimers of the PS I complex in the membrane and facilitating state transitions (PsaL). The functions of the remaining polypeptides, PsaF, PsaI, PsaJ, PsaK, and PsaM, are unclear; however it is increasingly unlikely that they participate directly in the primary processes of photochemical energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almog O, Shoham G and Nechushtai R (1992) Photosystem I: composition, organization and structure. In: Barber J (ed) Topics in Photosynthesis, Vol 11: The Photosystems: Structure, Function and Molecular Biology, pp 443–469. Elsevier, Amsterdam.

    Google Scholar 

  • Andersen B, Koch B, Scheller HV, Okkels JS and Moller BL (1990) Nearest neighbor analysis of the Photosystem I subunits in barley and their binding of ferredoxin. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 671–674. Kluwer, Dordrecht.

    Google Scholar 

  • Andersen B, Scheller HV and Møller BL (1992) The PS I-E subunit of Photosystem I binds ferredoxin:NADP+ oxido-reductase. FEBS Lett 311: 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Anderson S and Mcintosh L (1991a) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. PCC 6803: A blue light requiring process. J Bacteriol 173: 2761–2767.

    PubMed  CAS  Google Scholar 

  • Anderson S and Mcintosh L (1991b) Partial conservation of the 5′ ndhE-psaC-ndhD 3′ gene arrangement of chloroplasts in the cyanobacterium Synechocystis sp. PCC 6803: Implications for NDH-D function in cyanobacteria and chloroplasts. Plant Mol Biol 16: 487–499.

    Article  PubMed  CAS  Google Scholar 

  • Bengis C and Nelson N (1975) Purification and properties of the Photosystem I reaction center from chloroplasts. J Biol Chem 250: 2783–2788.

    PubMed  CAS  Google Scholar 

  • Bengis C and Nelson N (1977) Subunit structure of chloroplast Photosystem I reaction center. J Biol Chem 252: 4564–4569.

    PubMed  CAS  Google Scholar 

  • Biggins J (1990) Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the Photosystem I reaction center. Biochemistry 29: 7259–7264.

    Article  PubMed  CAS  Google Scholar 

  • Bock CH, Van der Est AJ, Brettel K and Stehlik D (1989) Nanosecond electron transfer kinetics in Photosystem I as obtained from transient EPR at room temperature. FEBS Lett 247: 91–96.

    Article  CAS  Google Scholar 

  • Boekema EJ, Dekker JP, Rögner M, Witt I, Witt HT and Van Heel M (1989) Refined analysis of the trimeric structure of the isolated Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. Biochim Biophys Acta 974: 81–87.

    Article  CAS  Google Scholar 

  • Böttcher B, Gräber P and Boekema EJ (1992) The structure of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. determined by electron microscopy of 2-dimensional crystals. Biochim Biophys Acta 1100: 125–136.

    Article  PubMed  Google Scholar 

  • Bottin H and Sétif P (1991) Inhibition of electron transfer from A0 to A1 in Photosystem I after treatment in darkness at low redox potential. Biochim Biophys Acta 1057: 331–336.

    Article  CAS  Google Scholar 

  • Brettel K (1988) Electron transfer from A1 to an iron-sulfur center with t1/2 = 200 ns at room temperature in Photosystem I. Characterization by flash absorption spectroscopy. FEBS Lett 239: 93–98.

    Article  CAS  Google Scholar 

  • Brettel K, Sieckmann I, Fromme P, Van der Est A and Stehlik D (1992) Low-temperature EPR on single crystals of Photo-system-I — Study of the iron-sulfur center FA. Biochim Biophys Acta 1098: 266–270.

    Article  CAS  Google Scholar 

  • Bryant DA (1992) Molecular biology of Photosystem I. In: Barber J (ed) Current Topics in Photosynthesis, Vol 11, The Photosystems: Structure, Function, and Molecular Biology, pp 501–549. Elsevier, Amsterdam.

    Google Scholar 

  • Bryant DA, Rhiel E, de Lorimier R, Zhou J, Stirewalt VL, Gasparich GE, Dubbs JM and Snyder W (1990) Analysis of phycobilisome and Photosystem I complexes of cyanobacteria. Tn: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 1–9. Kluwer, Dordrecht.

    Google Scholar 

  • Büttner M, Xie D-L, Nelson H, Pinther W, Hauska G and Nelson N (1992) Photosynthetic reaction genes in green sulfur bacteria and in photosystem I are related. Proc Natl Acad Sci USA 89: 8135–8139.

    Article  PubMed  Google Scholar 

  • Cantrell A and Bryant DA (1987) Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol Biol 9: 453–468.

    Article  CAS  Google Scholar 

  • Carter CW Jr (1977) X-Ray analysis of high-potential iron-sulfur proteins and ferredoxins. In: Lovenberg W (ed) Iron-Sulfur Proteins, Vol III, pp 158–205. Academic Press, New York.

    Google Scholar 

  • Chitnis PR and Nelson N (1991) Photosystem I. In: Bogorad L and Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 7B, The Photosynthetic Apparatus: Molecular Biology and Operation, pp 177–224. Academic Press, New York.

    Google Scholar 

  • Chitnis PR and Nelson N (1992) Assembly of two subunits of the cyanobacterial Photosystem I on the n-side of thylakoid membranes. Plant Physiol 99: 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Chitnis PR, Reilly PA and Nelson N (1989a) Insertional inactivation of the gene encoding subunit II of Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 264: 18381–18385.

    PubMed  CAS  Google Scholar 

  • Chitnis PR, Reilly PA, Miedel MC and Nelson N (1989b) Structure and targeted mutagenesis of the gene encoding 8 kDa subunit of Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 264: 18374–18380.

    PubMed  CAS  Google Scholar 

  • Chitnis PR, Purvis D and Nelson N (1991) Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit-III of Photosystem I from the cyanobacterium Synechocystis-sp PCC 6803. J Biol Chem 266: 20146–20151.

    PubMed  CAS  Google Scholar 

  • Chitnis VP, Xu Q, Yu L, Golbeck JH, Nakamoto H, Xie D-L. and Chitnis PR (1993) Targeted inactivation of the gene psaL encoding a subunit of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 268: 11678–11684.

    PubMed  CAS  Google Scholar 

  • Demerec M, Adelberg EA, Clark AJ and Hartman PE (1966) A proposal for a uniform nomenclature in bacterial genetics. Genetics 54: 61–76.

    PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp E, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624.

    Article  PubMed  CAS  Google Scholar 

  • Dunn PPJ and Gray JC (1988) Localization and nucleotide sequence of the gene for the 8 kDa subunit of Photosystem I in pea and wheat chloroplast DNA. Plant Mol Biol 11: 311–319.

    Article  CAS  Google Scholar 

  • Dure L (1991) On naming plant genes. Plant Mol Biol Rep 9: 220–228.

    Article  Google Scholar 

  • Enami I, Kaiho H, Izumi H, Katoh S, Kotani N, Jone C.S, Kamo M and Tsugita A (1990) PsaD can form complexes with ferredoxin and ferredoxin-oxidoreductase in Photosystem I (PS I) reaction centre. Protein Seq Data Anal 3: 257–262.

    PubMed  CAS  Google Scholar 

  • Evans MCW and Bredenkamp G (1990) The structure and function of the Photosystem I reaction center. Physiol Plant 79: 415–420.

    Article  CAS  Google Scholar 

  • Falzone CJ, Kao Y-H, Zhao J, McLaughlin KL, Bryant DA and Lecomte JTJ (1994a) 1H and 15N NMR assignments of the PsaE subunit from the Photosystem I complex of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry, in press.

    Google Scholar 

  • Falzone CJ, Kao Y-H, Zhao J, Bryant DA and Lecomte JTJ (1994b) The three-dimensional solution structure of PsaE from Synechococcus sp. strain PCC 7002: a Photosystem I protein that shows structural homology with SH3 domains. Biochemistry, in press.

    Google Scholar 

  • Feiler U, Nitschke W and Michel H (1992) Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS Centers F (A) and F (B) and a bound cytochrome subunit. Biochemistry 31: 1614–2608.

    Article  Google Scholar 

  • Fenton JM, Pellin MJ, Govindjee and Kaufmann KJ (1979) Primary photochemistry of the reaction center of Photosystem I. FEBS Lett 100: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Fish LE and Bogorad L (1986) Identification and analysis of the maize P700 chlorophyll a apoproteins PS I-A1 and PS I-A2 by high pressure liquid chromatography analysis and partial sequence determination. J Biol Chem 261: 8134–8139.

    PubMed  CAS  Google Scholar 

  • Fish LE, Kuck U, and Bogorad L (1985) Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421.

    PubMed  CAS  Google Scholar 

  • Ford RC (1987) Investigation of highly stable Photosystem I chlorophyll-protein complexes from the thermophilic cyanobacterium Phormidium laminosum. Biochim Biophys Acta 893: 115–125.

    Article  CAS  Google Scholar 

  • Ford RC and Holzenburg A (1988) Investigation of the structure of trimeric and monomeric Photosystem I reaction center complexes. EMBO J 7: 2287–2293.

    PubMed  CAS  Google Scholar 

  • Ford RC, Picot D and Garavito RM (1987) Crystallization of the Photosystem I reaction center. EMBO J 6: 1581–1586.

    PubMed  CAS  Google Scholar 

  • Ford RC, Hefti A and Engel A (1990) Ordered arrays of the Photosystem I reaction center after reconstitution: projections and surface reliefs of the complex at 2 nm resolution. EMBO J 9: 3067–3075.

    PubMed  CAS  Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry Part III, pp. 93–137. Academic Press, New York.

    Google Scholar 

  • Fuchsie G, Bittl R, Van der Est A, Lubitz W and Stehlik D (1993) Transient EPR spectroscopy of the charge separated state P+Q- in photosynthetic reaction centers — comparison of Zn-substituted Rhodobacter sphaeroides R-26 and Photosystem I. Biochim Biophys Acta 1142: 23–35.

    Article  Google Scholar 

  • Fukuyama K, Nagahara Y, Tsuikihara T, Katsube Y, Hase T and Matsubara H (1988) Tertiary structure of Bacillus thermo-proteolyticus [4Fe-4S] ferredoxin. Evolutionary implications for bacterial ferredoxins. J Mol Biol 199: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard J, Quinkal I and Moulis JM (1993) Effect of replacing conserved proline residues on the EPR and NMR properties of Clostridium pasteurianum-2[4Fe-4S] ferredoxin. Biochemistry 32: 9881–9887.

    Article  PubMed  CAS  Google Scholar 

  • Gierer M, Van der Est A and Stehlik D (1991) Transient EPR of weakly coupled spin-correlated radical pairs in photosynthetic reaction centers: increased spectral resolution from nutation analysis. Chem Phys Lett 186: 238–247.

    Article  CAS  Google Scholar 

  • Golbeck JH (1987) Structure, function and organization of the Photosystem I reaction center complex. Biochim Biophys Acta 895: 167–204.

    Article  PubMed  CAS  Google Scholar 

  • Golbeck JH (1992) Structure and function of Photosystem I. Ann Rev Plant Physiol Plant Mol Biol 43: 293–324.

    Article  CAS  Google Scholar 

  • Golbeck JH (1993a) Photosystem I and its bacterial counterparts. In: Song PS and Horspool W (eds) CRC Handbook of Organic Photochemistry and Photobiology, CRC Press, London (in press).

    Google Scholar 

  • Golbeck JH (1993b) Spectroscopic characterization of wild-type and genetically-modified Photosystem I. In: Murata N (ed) Current Research in Photosynthesis, Vol I, pp 487–496. Kluwer, Dordrecht.

    Google Scholar 

  • Golbeck JH and Bryant DA (1991) Photosystem I. In: Lee CP (ed) Current Topics in Bioenergetics, Vol 16, Light Driven Reactions in Bioenergetics, pp. 83–177. Academic Press, New York.

    Google Scholar 

  • Golbeck JH, Mehari T, Parrett KG and Ikegami I (1988b) Reconstitution of the Photosystem I complex from the P700 and Fx-containing reaction center core protein and the FA/FB polypeptide. FEBS Lett. 240: 9–14.

    Article  CAS  Google Scholar 

  • Golbeck JH, Parrett KG, Mehari T, Jones KL and Brand J (1988a) Isolation of the intact Photosystem I reaction center core containing P700 and iron-sulfur center Fx. FEBS Lett 228: 268–272.

    Article  CAS  Google Scholar 

  • Guigliarelli B, Guillaussier J, More C, Setif P, Bottin H and Bertrand P (1993) Structural organization of the iron-sulfur centers in Synechocystis-6803 Photosystem I — EPR study of oriented thylakoid membranes and analysis of the magnetic interactions. J. Biol. Chem. 268: 900–908.

    PubMed  CAS  Google Scholar 

  • Guikema JA, Odom WR, Xu Q, Wong PP and Chitnis PR (1993) Iron nutrition and photosynthesis: biogenesis and assembly of the photosystem 1 reaction center complex in cyanobacteria and higher plants. In: Hemantaranjan A (ed) Advances in Iron Nutrition Research. Council of Scientific Information, Trivandrum, India, in press.

    Google Scholar 

  • Haehnel WH, Gause K, Jansen T, Klösgen RB, Herrmann RG, Stahl B, Karas M, Witt I and Witt HT (1992) Molecular structure of the crystallized reaction center complex and mechanism of the electron transfer to Photosystem I. In: Murata N (ed) Research in Photosynthesis, Vol 2, pp 455–462. Kluwer, Dordrecht.

    Google Scholar 

  • Hallick R (1989) Proposals for the naming of chloroplast genes. II. Update to the nomenclature of genes for thylakoid membrane polypeptides. Plant Mol Biol Rep 7: 226–275.

    Article  Google Scholar 

  • Hanley JA, Kear J, Bredenkamp G, Li G, Heathcote P and Evans MCW (1992) Biochemical evidence for the role of the bound iron-sulphur centre-A and centre-B in NADP reduction by Photosystem I. Biochim Biophys Acta 1099: 152–156.

    Article  CAS  Google Scholar 

  • Hatanaka, H. Sonoike, K. Hirano, M. Katoh, S. (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. 1. Is the psaF gene product required for oxidation of cytochrome c553. Biochim Biophys Acta 1141: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • He WZ and Malkin R (1992) Specific Release of a 9 kDa Extrinsic polypeptide of Photosystem I from spinach chloroplasts by salt washing. FEBS Lett 308: 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Heathcote P, Hanley JA and Evans, MCW (1993) Double-reduction of A (1) abolishes the EPR signal attributed to A (1 -)-evidence for C2 symmetry in the Photosystem I reaction centre. Biochim Biophys Acta 1144: 54–61.

    Article  CAS  Google Scholar 

  • Hefti A, Ford RC, Miller M, Cox RP and Engel A (1992) Analysis of the structure of Photosystem I in cyanobacterial thylakoid membranes. FEBS Lett 296: 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Henry RL, Takemoto LJ, Murphy J, Gallegos GL and Guikema JA (1992) Development and use of domain-specific antibodies in a characterization of the large subunits of soybean Photosystem I. Plant Physiol Biochem 30: 357–364.

    PubMed  CAS  Google Scholar 

  • Herman P., Adiwilaga K, Golbeck JH and Weeks DP (1993) Sequence of a psaC gene from the cyanobacterium Synechococcus sp. PCC 6301. Plant Physiol, in press.

    Google Scholar 

  • Hippler M, Ratajczak R and Haehnel W (1989) Identification of the plastocyanin binding subunit of Photosystem I. FEBS Lett 250: 280–284.

    Article  CAS  Google Scholar 

  • Hladik J and Sofrova D (1991) Does the trimeric form of the photosystem-1 reaction center of cyanobacteria exist In vivo?. Photosynth Res 29: 171–175.

    CAS  Google Scholar 

  • Holzwarth A, Schatz G, Brock, H and Bittersmann E. (1993) Energy transfer and charge separation kinetics in Photosystem-1.1. Picosecond transient absorption and fluorescence study of cyanobacterial Photosystem I particles. Biophys J. 64: 1813–1826.

    Article  PubMed  CAS  Google Scholar 

  • Ikegami I, Itoh S, Warren PG and Golbeck JH (1993) Reconstitution of the Photosystem I secondary quinone acceptor (Al) in the P700-Fx core isolated from Synechococcus sp. PCC 6301. Plant Cell Physiol 34: 849–853.

    CAS  Google Scholar 

  • Ikeuchi M (1992) Subunit Proteins of Photosystem I. Plant Cell Physiol 33: 669–676.

    CAS  Google Scholar 

  • Ikeuchi M, Hirano A, Hiyama T and Inoue Y (1990) Polypeptide composition of higher plant Photosystem I complex: identification of psaI,psaJ and psaK genc products. FEBS Lett 263: 274–278.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Nyhus KJ., Inoue Y and Pakrasi HB (1991) Identities of four low-molecular-mass subunits of the Photosystem I complex from Anabaena variabilis ATCC 29413. Evidence for the presence of the psal gene product in a cyanobacterial complex. FEBS Lett 287: 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Sonoike K, Koike H, Pakrasi HB and Inoue Y (1992) A novel 3.5 kDa protein component of cyanobacterial Photosystem I complexes. Plant Cell Physiol 33: 1057–1063.

    CAS  Google Scholar 

  • Inoue K, Kusumoto N and Sakurai H (1992) Some properties of iron-sulfur centers in the FB-destroyed and FB-reconstituted PS I particles. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 577–580. Kluwer, Dordrecht.

    Google Scholar 

  • Iwaki M, Takahashi M, Shimada K and Itoh S (1992) Photoaffinity labeling of the phylloquinone-binding polypeptides by 2-azidoanthraquinone in Photosystem I particles. FEBS Lett 312: 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Yoshihara K and Ikegami I (1989) Picosecond photochemistry of P 700-enriched and vitamin K1-depleted Photosystem I particles isolated from spinach. Plant Cell Physiol 30: 679–684.

    CAS  Google Scholar 

  • Kirsch W, Seyer P and Herrmann RG (1986) Nucleotide sequence of the clustered genes for two P700 chlorophyll a apoproteins of the Photosystem I reaction center and the ribosomal protein S14 of the spinach plastid chromosome. Curr Genet 10: 843–855.

    Article  CAS  Google Scholar 

  • Kissinger CR, Adman ET, Sieker LC, Jensen LH and LeGall J (1989) The crystal structure of the three-iron ferredoxin III from Desulfovibrio gigas. FEBS Lett 244: 447–450.

    Article  PubMed  CAS  Google Scholar 

  • Kjær B, Jung Y-S, Golbeck JH and Scheller HV (1994) Iron-sulfur centers in the photosynthetic reaction center from Chlorobium vibrioforme. Differences and similarities to the iron-sulfur centers in Photosystem I. Photosynthesis Res, submitted.

    Google Scholar 

  • Knoetzel J and Simpson D (1992) Polypeptides involved in excitation energy transfer to Photosystem I in barley. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 645–648. Kluwer, Dordrecht.

    Google Scholar 

  • Kössel H, Doery I, Istvan G and Maier R (1990) A leucine-zipper motif in Photosystem I. Plant Mol Biol 15: 497–499.

    Article  PubMed  Google Scholar 

  • Koike H, Ikeuchi M, Hiyama T and Inoue Y (1989) Identification of Photosystem I components from the cyanobacterium, Synechococcus vulcanus by N-terminal sequencing. FEBS Lett 235: 257–263.

    Article  Google Scholar 

  • Kok B (1973) Photosynthesis. In: Gibbs M, Hollaender A, Kok B, Krampitz LO and San Pietro A (eds) Proceedings of the Workshop on Bio-Solar Conversion, a report on a workshop held 5–6 September at Bethesda MD, supported by the NSF under RANN Grant GI40253.

    Google Scholar 

  • Kotani N, Tsugita A, Kondo K, Aso K and Enami I (1992) Amino acid sequence of 10 kDa protein in Photosystem I reaction-center complex from a thermophilic cyanobacterium, Synechococcus elongatus Naegeli. Protein Seq Data Anal 4: 93–96.

    Google Scholar 

  • Krauβ N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) 3-Dimensional structure of system-I of photosynthesis at 6 Angstrom resolution. Nature 361: 326–331.

    Article  Google Scholar 

  • Kruip J, Boekema EJ, Bald D, Boonstra AF and Rögner M (1993) Isolation and structural characterization of monomeric and trimeric Photosystem I complexes (P700-FA/FB and P700-Fx) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem, 268: 23353–23360.

    PubMed  CAS  Google Scholar 

  • Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron microscopy. Nature 350: 130–134.

    Article  PubMed  Google Scholar 

  • Lagoutte B and Mathis P (1989) The Photosystem I reaction center: structure and photochemistry. Photochem Photobiol 49: 833–844.

    Article  CAS  Google Scholar 

  • Lagoutte B and Vallon O (1992) Purification and membrane topology of PS I-D and PS I-E, 2 subunits of the Photosystem I reaction center. Eur J Biochem 205: 1175–1185.

    Article  PubMed  CAS  Google Scholar 

  • Li N, Warren PV, Golbeck JH, Frank G, Zuber H and Bryant DA (1991a) Polypeptide composition of the Photosystem I complex and the Photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059: 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Li N, Zhao JD, Warren PV, Warden JT, Bryant D and Golbeck JH (1991b) PsaD is required for the stable binding of PsaC to the Photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872.

    Article  PubMed  CAS  Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC, Blankenship RE and Vermaas WFJ (1992) The reaction center core polypeptide in the photosynthetic bacterium Heliobacillus mobilis. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 595–598. Kluwer, Dordrecht.

    Google Scholar 

  • Liebl U, Mockensturm-Wilson M, Trost JT, Brune DC Blankenship RE and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90: 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  • Lockau W and Nitschke W (1993) Photosystem I and its bacterial counterparts. Physiol Plant 88: 372–381.

    Article  CAS  Google Scholar 

  • Maeda H, Watanabe T, Kobayashi M and Ikegami I (1992) Presence of 2 chlorophyll a’ molecules at the core of Photosystem I. Biochim Biophys Acta 1099: 74–80.

    Article  CAS  Google Scholar 

  • Malkin R (1982) Photosystem I. Ann Rev Plant Physiol 33: 455–479.

    Article  CAS  Google Scholar 

  • Malkin R (1987) Photosystem I. In: Barber J (ed) The Light Reactions, pp 495–525. Elsevier, Amsterdam.

    Google Scholar 

  • Mann K, Schlenkricht T, Bauer M and Huber R (1991) The amino-acid sequence of three proteins of Photosystem I of the cyanobacterium Fremyella diplosiphon (Calothrix sp. PCC 7601). J Chem Hoppe-Seyler 372: 519–524.

    Article  CAS  Google Scholar 

  • Mannan RM and Pakrasi HB (1991) Molecular analysis of the psaC gene encoding the FA/FB apoprotein of Photosystem I from the filamentous cyanobacterium Anabaena sp. ATCC 29413. Plant Physiol 98: 798–800.

    Article  Google Scholar 

  • Mannan RM, Whitmarsh J, Nyman P and Pakrasi HB (1991) Directed mutagenesis of an iron-sulfur protein of the Photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Proc Natl Acad Sci USA 88: 10168–10172.

    Article  PubMed  CAS  Google Scholar 

  • Margulies MM (1991) Sequence similarity between Photosystem I and Photosystem II — identification of a Photosystem I reaction center transmembrane helix that is similar to transmembrane helix-IV of the D2-subunit of Photosystem II and the M-subunit of the non-sulfur purple and flexible green bacteria. Photosynth Res 29, 133–147.

    CAS  Google Scholar 

  • Mathis P and Rutherford AW (1987) The primary reactions of photosystems I and II of algae and higher plants. In: Amesz J (ed) New Comprehensive Biochemistry, Vol 15, Photosynthesis, pp 63–96. Elsevier, Amsterdam.

    Google Scholar 

  • Mathis P and Schenck CC (1982) The functions of carotenoids in photosynthesis. In: G Britton and TW Goodwin (eds) Carotenoid Chemistry and Biochemistry, pp 339–351. Permagon Press, Oxford.

    Google Scholar 

  • Mathis P and Sétif P (1981) Near infra-red absorption spectra of the chlorophyll a cations and triplet state in vitro and in vivo. Israel J Chem 21: 316–320.

    CAS  Google Scholar 

  • Mathis P and Sétif, P (1988) Kinetic studies on the function of A1 in the Photosystem I reaction center. FEBS Lett 237: 65–68.

    Article  CAS  Google Scholar 

  • Mathis P, Ikegami I. and Sétif P (1988) Nanosecond flash studies of the absorption spectrum of the Photosystem I primary acceptor A0. Photosynth Res 16: 203–210.

    Article  CAS  Google Scholar 

  • Maxwell PC and Biggins J (1976) Role of cyclic electron transport in photosynthesis as measured by the turnover of P700 in vivo. Biochemistry 15: 3975–3981.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PC and Biggins J (1977) The kinetic behavior of P-700 during the induction of photosynthesis in algae. Biochim Biophys Acta 459: 442–450.

    Article  PubMed  CAS  Google Scholar 

  • McDermott AE, Yachandra VK, Guiles RD, Sauer K, Parrett KG and Golbeck JH (1989) An EXAFS structural study of Fx, the low potential Fe-S center in Photosystem I. Biochemistry 28: 8056–8059.

    Article  PubMed  CAS  Google Scholar 

  • Mehari T, Parrett KG, Warren PV and Golbeck JH (1991) Reconstitution of the iron-sulfur clusters in the isolated FA/FB protein: ESR characterization of same-species and cross-species Photosystem I complexes. Biochim Biophys Acta 1056: 139–148.

    Article  CAS  Google Scholar 

  • Miller M, Liu X, Snyder SW, Thurnauer M and Biggins J (1992) Photosynthetic electron-transfer reactions in the green sulfur bacterium Chlorobium-Vibrioforme — Evidence for the functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center. Biochemistry 31: 4354–4363.

    Article  PubMed  CAS  Google Scholar 

  • Moller BL, Scheller HV, Okkels J.S, Jepson LB, Koch B, Andersen B, Nielson HL, Olsen I, Haliker BA and Høj PB (1990) Chloroplast encoded Photosystem I polypeptides of barley. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 2, pp 523–530. Kluwer, Dordrecht.

    Google Scholar 

  • Mühlenhoff U, Haehnel W, Witt H and Herrmann RG (1993) Genes encoding 11 subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78.

    Article  PubMed  Google Scholar 

  • Mulligan ME and Jackman DM (1992) Nucleotide sequence and expression of the gene for the 9 kDa FA/FB component of Photosystem I from the cyanobacterium Anabaena sp. Strain PCC 7120. Plant Mol Biol 18: 803–808.

    Article  PubMed  CAS  Google Scholar 

  • Myers J (1986) Photosynthetic and respiratory electron transport in a cyanobacterium. Photosynth Res 9: 135–147.

    Article  CAS  Google Scholar 

  • Myers J (1987) Is there significant cyclic electron flow around photoreaction 1 in cyanobacteria?. Photosynth Res 14: 55–69.

    Article  CAS  Google Scholar 

  • Nelson N (1987) Structure and function of protein complexes in the photosynthetic membrane. In: Amesz J (ed.) New Comprehensive Biochemistry, Vol 15, Photosynthesis, pp 213–231. Elsevier, Amsterdam.

    Google Scholar 

  • Nitschke W and Rutherford AW (1991) Photosynthetic reaction centers: variations on a common structural theme?. Trends Biochem Sci 16: 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Feiler U and Rutherford AW (1990a) Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry 29: 3834–3842.

    Article  PubMed  CAS  Google Scholar 

  • Nitschke W, Sétif P, Liebl U, Feiler, U and Rutherford AW (1990b) Reaction center photochemistry of Heliobacterium chlorum.. Biochemistry 29: 11079–11088.

    Article  PubMed  CAS  Google Scholar 

  • Nugent JHA, Ruffle SV and Berry MC (1993) Predictions of key structural features in the polypeptides of Photosystem I and Photosystem II. Biochem Soc Trans 21: 22–25.

    PubMed  CAS  Google Scholar 

  • Nyhus KJ, Ikeuchi M, Inoue Y, Whitmarsh J and Pakrasi HB (1992) Purification and characterization of the Photosystem I complex from the filamentous cyanobacterium Anabaena-Variabilis ATCC-29413. J Biol Chem 267: 12489–12495.

    PubMed  CAS  Google Scholar 

  • Nyhus KJ, Thiel T and Pakrasi HB (1993) Targeted interruption of the psaA and psaB genes encoding the reaction-centre proteins of Photosystem I in the filamentous cyanobacterium Anabaena variabilis ATCC-29413. Mol Microbiol 9: 979–988.

    Article  PubMed  CAS  Google Scholar 

  • Nyhus KJ, Sonoike K and Pakrasi HB (1994) Nucleotide sequences of the psaA and psaB genes encoding the reaction center proteins of Photosystem I in Anabaena variabilis ATCC 29413. Biochim Biophys Acta, in press.

    Google Scholar 

  • Oh-oka H, Takahashi Y, Kuriyama K, Saeki K and Matasubara H (1988) The protein responsible for center A/B in spinach Photosystem I: isolation with iron-sulfur cluster(s) and complete sequence analysis J Biochem 103: 962–968.

    PubMed  CAS  Google Scholar 

  • Oh-Oka H, Takahashi Y and Matsubara H (1989) Topological considerations of the 9 kDa polypeptide which contains centers A and B, associated with the 14-and 19 kDa polypeptides in the Photosystem I complex of spinach. Plant Cell Physiol 30: 869–875.

    CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574.

    Article  CAS  Google Scholar 

  • Ortiz W, Lam E Chollar S; Munt D and Malkin R (1985) Topography of the protein complexes of the chloroplast thylakoid membrane. Studies of Photosystem I using a chemical probe and proteolytic digestion. Plant Physiol 77: 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Parrett KG, Mehari T, Warren P and Golbeck JH (1989) Purification and properties of the intact P700 and Fx-containing Photosystem I core protein. Biochim Biophys Acta 973: 324–332.

    Article  PubMed  CAS  Google Scholar 

  • Parrett KP, Mehari T and Golbeck JH (1990) Resolution and reconstitution of the cyanobacterial Photosystem I complex. Biochim Biophys Acta 1015: 341–352.

    Article  CAS  Google Scholar 

  • Petersen J, Stehlik D, Gast P and Thurnauer M (1987) Comparison of the electron spin polarized spectrum found in plant Photosystem I and in iron-depleted bacterial reaction centers with time-resolved K-band EPR; evidence that the Photosystem I acceptor A1 is a quinone. Photosynth Res 14: 15–29.

    Article  CAS  Google Scholar 

  • Petrouleas V, Brand JJ, Parrett KP and Golbeck JH (1989) A Mössbauer analysis of the low-potential iron-sulfur center in Photosystem I. Spectroscopic evidence that Fx is a [4Fe-4S] cluster. Biochemistry 28: 8980–8983.

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak R, Mitchell R and Haehnel W (1988) Properties of the oxidizing site of Photosystem I. Biochim Biophys Acta 933: 306–318.

    Article  CAS  Google Scholar 

  • Reilly P and Nelson N (1988) Photosystem I complex. Photosynth Res 19: 73–84.

    Article  CAS  Google Scholar 

  • Reilly P, Hulmes JD, Pan Y-C and Nelson N (1988) Molecular cloning and sequencing of the psaD gene encoding subunit II of Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 263: 17658–17662.

    PubMed  CAS  Google Scholar 

  • Rhiel E and Bryant D (1988) In: Stevens SE Jr and Bryant DA (eds) Light Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 320–323. Amer Soc Plant Physiol, Rockville, MD.

    Google Scholar 

  • Rhiel E and Bryant DA (1992) Nucleotide sequence of the psaE gene of Synechococcus sp. PCC 6301. Plant Physiol 101: 701–702.

    Article  Google Scholar 

  • Rhiel E, Stirewalt VL, Gasparich GE and Bryant DA (1992) The psaC genes of Synechococcus sp. PCC 7002 and Cyanophora paradoxa: cloning and sequence analysis. Gene 112: 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Rodday SM, Jun S-S and Biggins J (1992) Interaction of the FA-FB binding subunit with the Photosystem I core heterodimer. Photosynth Res 36: 1–9.

    Article  Google Scholar 

  • Rögner M, Mühlenhoff U, Boekema EJ and Witt HT (1990) Mono-, di-andtrimeric PS I reaction center complexes isolated from the thermophilic cyanobacterium Synechococcus sp. Size, shape and activity. Biochim Biophys Acta 1015: 415–424.

    Article  Google Scholar 

  • Rousseau F and Lagoutte B (1990) Amino acid sequence of Photosystem I subunit IV from the cyanobacterium Synecho-cystis sp. PCC 6803. FEBS Lett 260: 241–244.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PS I-E in the reduction of ferredoxin by Photosystem I. EMBO J 12: 1755–1765.

    PubMed  CAS  Google Scholar 

  • Rustandi RR, Snyder SW, Biggins J, Norris JR and Thurnauer MC (1992) Reconstitution and exchange of quinones in the A1 site of Photosystem I — An electron spin polarization electron paramagnetic resonance study. Biochim Biophys Acta 1101: 311–320.

    Article  CAS  Google Scholar 

  • Rustandi RR, Snyder SW, Feezel LL, Michalski TJ, Norris JR, Thurnauer MC and Biggins J (1990) Contribution of vitamin K1 to the electron spin polarization in spinach Photosystem I. Biochemistry 29: 8030–8032.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW and Mullet JE (1981) Reaction center triplet states in Photosystem I and Photosystem II. Biochim Biophys Acta 635: 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai H, Inoue K, Fujii T and Mathis P (1991) Effects of selective destruction of iron-sulfur center B on electron transfer and charge recombination in Photosystem I. Photosynth Res 27: 65–71.

    Article  CAS  Google Scholar 

  • Scheller HV and Moller, BL (1990) Photosystem I polypeptides. Physiol Plant 78: 484–494.

    Article  CAS  Google Scholar 

  • Scheller HV, Okkels JS, Høj PB, Svendsen I, Roepstorff P and Moller BL (1989a) The primary structure of a 4.0 kDa Photosystem I polypeptide encoded by the chloroplast psal gene. J Biol Chem 264: 18402–18406.

    PubMed  CAS  Google Scholar 

  • Scheller HV, Svendsen I and Moller BL (1989b) Subunit composition of Photosystem I and identification of center X as a [4Fe-4S] iron-sulfur cluster. J Biol Chem 264: 6929–6934.

    PubMed  CAS  Google Scholar 

  • Sétif P (1992) Energy transfer and trapping in Photosystem I. In: Barber J (ed) Current Topics in Photosynthesis, Vol 11, The Photosystems: Structure, Function, and Molecular Biology, pp 471–499. Elsevier, Amsterdam.

    Google Scholar 

  • Sétif P and Bottin H (1989) Identification of electron-transfer reactions involving the acceptor A1 of Photosystem I at room temperature. Biochemistry 28: 2689–2697.

    Article  Google Scholar 

  • Sétif P and Brettel K (1990) Photosystem I photochemistry under highly reducing conditions: study of the P700 triplet state formation from the secondary radical pair (P700+-A1 -). Biochim Biophys Acta 1020: 232–238.

    Article  Google Scholar 

  • Sétif P and Brettel K (1993) Forward electron transfer from phylloquinone-A(1) to iron sulfur centers in spinach Photosystem-I. Biochemistry 31: 7846–7854.

    Article  Google Scholar 

  • Shimizu T, Hiyama T, Ikeuchi M, Koike H. and Inoue Y (1990) Nucleotide sequence of the psaC gene of the cyanobacterium Synechococcus vulcanus. Nucl Acids Res 18: 3644–3644.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Hiyama T, Ikeuchi M and Inoue Y (1992) Nucleotide sequences of the psaA and psaB genes encoding the Photosystem I core proteins from the thermophilic cyanobacterium Synechococcus vulcanus. Plant Mol Biol 18: 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, and Sugiura M (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049.

    PubMed  CAS  Google Scholar 

  • Shoham G, Michaeli D and Nechushtai R (1990) Photosystem I reaction center of Mastigocladus laminosus: Structural and functional aspects. In: Baltscheffsky M (ed.) Current Research in Photosynthesis, Vol II, pp 555–562. Kluwer, Dordrecht.

    Google Scholar 

  • Shuvalov VA, Nuijs AM, van Gorkom HJ, Smit JWJ and Duysens LNM (1986) Picosecond absorption changes upon selective excitation of the primary electron donor P-700 in Photosystem I. Biochim Biophys Acta 850: 319–323.

    Article  CAS  Google Scholar 

  • Sieckmann I, Brettel K, Bock C, Van der Est A and Stehlik D (1991a) Transient electron paramagnetic resonance of the triplet state of P(700) in photosystem. 1. Evidence for triplet deloealization at room temperature. Biochemistry 32: 4842–4847.

    Google Scholar 

  • Sieckmann I, Van der Est A, Bottin H, Sétif P and Stehlik D (1991b) Nanosecond electron transfer kinetics in Photosystem I following substitution of quinones for vitamin K1 as studied by time resolved EPR. FEBS Lett 284: 98–102.

    Article  Google Scholar 

  • Smart LB and Mcintosh L (1991) Expression of photosynthesis genes in the cyanobacterium Synechocystis sp. PCC 6803: psaA-psaB and psbA transcripts accumulate in dark-grown cells. Plant Mol Biol 17: 959–971.

    Article  PubMed  CAS  Google Scholar 

  • Smart L, Warren PV, Golbeck JH and Mcintosh L (1993) Mutational analysis of the structure and biogenesis of the Photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 90: 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  • Snyder SW, Rustandi RR, Biggins J, Norris JR and Thurnauer MC (1991) Direct assignment of vitamin-K1 as the secondary acceptor-A1 in Photosystem I. Proc Natl Acad Sci USA 88: 9895–9896.

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K, Ikeuchi M and Pakrasi H (1992) Presence of an N-terminal presequence in the Psal protein of the Photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Mol Biol 20: 987–990.

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K, Hatanaka H and Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus-elongatus. 2. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta 1141: 52–57.

    Article  PubMed  CAS  Google Scholar 

  • Stehlik D, Bock C and Petersen J (1989) Anisotropic electron spin polarization of correlated spin pairs in photosynthetic reaction centers. J Phys Chem 93: 1612–1619.

    Article  CAS  Google Scholar 

  • Steinmuller K (1992) Identification of a 2nd psaC gene in the cyanobacterium Synechocystis sp PCC 6803. Plant Mol Biol 20: 997–1001.

    Article  PubMed  CAS  Google Scholar 

  • Trebst A (1986) The topology of the plastoquinone and herbicide binding peptides of Photosystem II in the thylakoid membrane. Z Naturforsch 41C: 240–245.

    Google Scholar 

  • Trissl H.-W, Leibl W, Deprez J, Dobek A and Breton J (1987) Trapping and annihilation in the antenna system of Photosystem I. Biochim Biophys Acta 893: 320–332.

    Article  CAS  Google Scholar 

  • Trost JT and Blankenship RE (1989) Isolation of a photoactive photosynthetic reaction center-core antenna complex from Heliobacillus mobilis Biochemistry 28: 9898–9904.

    Article  PubMed  CAS  Google Scholar 

  • Tsiotis G, Nitschke W, Haase W and Michel H (1993) Purification and crystallization of Photosystem I complex from a phycobilisome-less mutant of the cyanobacterium Synechococcus PCC 7002. Photosynth Res 35: 285–297.

    Article  CAS  Google Scholar 

  • Vallon O and Bogorad L (1993) Topological study of PS I-A and PS I-B, the large subunits of the Photosystem-I reaction center. Eur J Biochem 214: 907–915.

    Article  PubMed  CAS  Google Scholar 

  • van der Staay, GWM, Boekema E, Dekker JP, and Matthijs HCP (1993) Characterization of trimeric Photosystem I particles from the prochlorophyte Prochlorothrix hollandica by electron microscopy and image analysis. Biochim Biophys Acta 1142: 189–193.

    Article  Google Scholar 

  • Warren PV, Parrett KG and Golbeck JH (1990) Characterization of a Photosystem I core containing P700 and intermediate electron acceptor A1. Biochemistry 29: 6545–6550.

    Article  PubMed  CAS  Google Scholar 

  • Warren PV, Golbeck JH and Warden JT (1993a) Charge recombination between P700+ and A1 - occurs directly to the ground state of P700 in the absence of Fx, FB and FA. Biochemistry 32: 849–857.

    Article  PubMed  CAS  Google Scholar 

  • Warren PV, Smart LB, Mcintosh L and Golbeck JH (1993b) Site-directed conversion of cysteine 565 to serine in PsaB of Photosystem I results in the assembly of [3Fe-4S] and [4Fe-4S clusters in Fx. A mixed-ligand [4Fe-4S] cluster is capable of electron transfer to FA and FB. Biochemistry 32: 4411–4419.

    Article  PubMed  CAS  Google Scholar 

  • Wasielewski MR, Fenton JM and Govindjee (1987) The rate of formation of P700+-A0 -in Photosystem I particles from spinach as measured by picosecond transient absorption spectroscopy. Photosynth Res 12: 181–190.

    Article  CAS  Google Scholar 

  • Webber AN and Malkin R (1990) Photosystem 1 reaction-center proteins contain leucine zipper motifs. A proposed role in dimer formation. FEBS Lett 264: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Webber AN, Gibbs PB, Ward JB and Bingham SE (1993) Site-directed mutagenesis of the Photosystem-I reaction center in chloroplasts—the cysteine-proline motif. J Biol Chem 268: 12990–12995.

    PubMed  CAS  Google Scholar 

  • Weber N and Strotmann H (1993) On the function of subunit PsaE in chloroplast Photosystem I. Biochim Biophys Acta 1143: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Witt, HT, Rögner M, Mühlenhoff U, Witt I, Hinrichs W, Saenger W, Betzel C, Dauter Z and Boekema, EJ (1990) On isolated complexes of reaction center I and X-ray characterization of single crystals. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 547–554. Kluwer, Dordrecht.

    Google Scholar 

  • Witt HT, Krauß N, Hinrichs W, Witt I, Fromme P and Saenger, W (1992) Three-dimensional crystals of Photosystem I from Synechococcus sp and X-ray structure analysis at 6 Å resolution. In: Murata N (ed) Research in Photosynthesis, Vol I pp 521–528. Kluwer, Dordrecht.

    Google Scholar 

  • Wolfe GR, Cunningham FX Jr and Gantt E (1992) In the red alga Porphyridium cruentum Photosystem I is associated with a putative LHC complex. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 315–318. Kluwer, Dordrecht.

    Google Scholar 

  • Wynn RM and Malkin R (1988) Interaction of plastocyanin with Photosystem I: a chemical cross-linking study of the polypeptide that binds plastocyanin. Biochemistry 27: 5863–5869.

    Article  PubMed  CAS  Google Scholar 

  • Wynn RM and Malkin R (1990) The Photosystem I 5.5 kDa subunit (the psaK gene product). An intrinsic subunit of the PS I reaction center complex. FEBS Lett 262: 45–48.

    Article  CAS  Google Scholar 

  • Wynn RM, Omaha J and Malkin R (1989) Structural and functional properties of the cyanobacterial Photosystem I complex. Biochemistry 28: 5554–5560.

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Yu L, Chitnis VP and Chitnis PR (1993) Function and organization of Photosystem I in a cyanobacterial mutant strain lacking PsaF and PsaJ subunits. J Biol Chem (in press).

    Google Scholar 

  • Yu L, Golbeck JH, Zhao JD, Schluchter W, Mühlenhoff U and Bryant D (1992) The PsaE protein is required for cyclic electron flow around Photosystem I in Synechococcus sp. PCC 6301. In: Murata N (ed) Current Research in Photosynthesis, Vol I, pp 565–568. Kluwer, Dordrecht.

    Google Scholar 

  • Yu L, Zhao J, Lu W, Bryant DA and Golbeck JH (1993a) Characterization of the [3Fe-4S] and [4Fe-4S] clusters in unbound PsaC mutants C14D and C51D. The midpoint potentials of the single [4Fe-4S] clusters are identical to FA and FB in bound PsaC of Photosystem I. Biochemistry 32: 8251–8258.

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Zhao JD, Mühlenhoff U, Bryant DA and Golbeck JH (1993b) PsaE is required for cyclic electron flow around Photosystem I in the cyanobacterium Synechococcus sp. PCC 7002. Plant Physiol 103: 171–180.

    PubMed  CAS  Google Scholar 

  • Zhao JD Warren PV, Li N, Bryant DA and Golbeck JH (1990) Reconstitution of electron transport in Photosystem I with PsaC and PsaD Proteins expressed in Escherichia coli. FEBS Lett. 276: 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Zhao JD, Li N, Warren PV, Golbeck JH and Bryant DA (1992) Site-directed conversion of a cysteine to an aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of Photosystem I. Photoreduction of FA is independent of FB. Biochemistry 31: 5093–5099.

    Article  PubMed  CAS  Google Scholar 

  • Zhao JD, Snyder WB, Mühlenhoff U, Rhiel E, Warren PV, Golbeck JH and Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Microbiol 9: 183–194.

    Article  PubMed  CAS  Google Scholar 

  • Zilber AL and Malkin R (1992) Organization and topology of Photosystem I subunits. Plant Physiol 99: 901–911.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Golbeck, J.H. (1994). Photosystem I in Cyanobacteria. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics