Skip to main content

Studies on the distribution and metabolism of D-rhodoic acid in algae

  • Conference paper
Twelfth International Seaweed Symposium

Part of the book series: Developments in Hydrobiology ((DIHY,volume 41))

Abstract

D-Rhodoic acid, N(D-l-carboxyethyl)taurine, has been isolated from some red algae by Kuriyama (1961a, b, c) and from gastropod molluscs by Sato et al. (1985). This compound has an interesting structure analogous to octopine, lysopine, strombine, alanopine and histopine, which are all referred to as “opines” (Morizawa, 1927; Biemann, 1960; Sangster et al 1975; Fields, 1976; Sato et al., 1977a, b; Kemp, 1977). Molluscan rhodoic acid is biosynthesized by rhodoic acid dehydrogenase from taurine and pyruvic acid, using NADH as coenzyme, in the muscle tissue (Sato et al., 1986; Sato & Gäde, 1986). Concerning the metabolism of rhodoic acid in algae, it has been postulated that rhodoic acid might be derived from chondrin by an oxidative ring-opening reaction (Kuriyama, 1961a, b, c). However, there is no confirmatory evidence about this metabolism. This experiment was planned to get more information on the metabolism and distribution of rhodoic acid in the algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beaulieu, C., L. J. Coulombe, R. L. Granger, B. Miki, C. Beauchamp, G. Rossignol & P. Dion, 1983. Characterization of opine-utilizing bacteria isolated from Québec. Phytoprotection64: 61–68.

    Google Scholar 

  • Biemann, K., 1960. Structure of lysopine, a new amino-acid isolated from crown gall tissue. Biochim. biophys. Acta40: 369–370.

    Article  PubMed  CAS  Google Scholar 

  • Bomhoff, G., P. M. Klapwjik, H. C. M. Kester, R. A. Schilperoort, J. P. Hernalsteens & J. Schell, 1976. Octopine and nopaline synthesis and breakdown genetically controlled by a plas- mid of Agrobacterium tumefaciens. Mol. gen. Genet.145: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Ellington, W. R., 1979. Octopine dehydrogenase EC 1.5.1.11 in the basilar muscle of the sea anemone Metridium senile. Comp. Biochem. Physiol.63: 349–354.

    Article  Google Scholar 

  • Ellington, W. R., 1980. Partial purification and characterization of a broadly-specific octopine dehydrogenase from the tissues of the sea anemone, Bunodosoma cavernata (BOSC). Comp. Biochem. Physiol.67B: 62–631.

    Google Scholar 

  • Fields, J. H. A., 1976. A dehydrogenase requiring alanine and pyruvate as substrates from oyster adductor muscle. Fed. Proc.35: 1687.

    Google Scholar 

  • Fields, J. H. A. & P. W. Hochachka, 1975. Octopine dehydrogenase in squid mantle. Comp. Biochem. Physiol.52B. 158.

    Article  CAS  Google Scholar 

  • Fields, J. H. A. & J. F. Quinn, 1981. Some theoretical considerations of cytosolic redox balance during anaerobiosis in marine invertebrates. J. theor. Biol.88: 35–45.

    Article  CAS  Google Scholar 

  • Gäde, G., 1980. Biological role of octopine formation in marine mollusks. Mar. Biol. Lett.1: 121–136.

    Google Scholar 

  • Gäde, G. & K. H. Carlsson, 1984. Purification and characterisation of octopine dehydrogenase from the marine nemertean Cerebratulus lacteus (Anopla: Heteronemerta). Comparison with scallop octopine dehydrogenase. Mar. Biol.79: 39–45.

    Article  Google Scholar 

  • Gäde, G. & M. Grieshaber, 1975. Partial purification and properties of octopine dehydrogenase and the formation of octopine in Anodonta cygnea. J. comp. Physiol.102: 149–158.

    Google Scholar 

  • Gelvin, S. B., M. F. Thomashow, J. C. McPherson, M. P. Gordon & E. W. Nester, 1982. Sizes and map positions of several plasmid-DNA-encoded transcripts in octopine-type crown gall tumors. Proc. natl. Acad. Sci. USA79: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Grieshaber, M. & G. Gàde, 1976. The biological role of octopine in the squid, Loligo vulgaris. J. comp. Physiol.108: 225–232.

    CAS  Google Scholar 

  • Kemp, J. D., 1977. A new amino acid derivative present in crown gall tumor tissue. Biochem. biophys. Res. Comm.74: 862–868.

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama, M., 1961a. Ninhydrin reactive substances in marine algae-I. On the absorbable fraction on strong cationic ion exchange resin. Bull. Jpn. Soc. sci. Fish.27: 689–693.

    Article  Google Scholar 

  • Kuriyama, M., 1961b. Ninhydrin reactive substances in marine algae—II. On the non-absorbable fraction on strong cationic ion exchange resin. Bull. Jpn. Soc. sci. Fish.27: 694–698.

    Article  Google Scholar 

  • Kuriyama, M., 1961c. Ninhydrin reactive substances in marine algae—III. On the chemical structure of “unknown A” isolated from red algae. Bull. Jpn. Soc. sci. Fish.27: 699–702.

    Article  Google Scholar 

  • Lemmers, M., M. De Beuckeleer, M. Holsters, P. Zambryski, A. Depicker, J. P. Hernalsteens, M. Van Montagu & J. Schell, 1980. Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J. mol. Biol.144: 353–376.

    Article  PubMed  CAS  Google Scholar 

  • Merlo, D. J. & E. W. Nester, 1977. Plasmids in avirulent strains of Agrobacterium. J. Bacteriol.129: 76–80.

    PubMed  CAS  Google Scholar 

  • Montoya, A. L., M.-D. Chilton, M. P. Gordon, D. Sciaky & E. W. Nester, 1977. Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells of plasmid genes. J. Bacteriol.129: 101–107.

    PubMed  CAS  Google Scholar 

  • Morizawa, K. 1927. Ueber die Extraktivstoffe von Oktopus oktopodia. Acta Sch. med. Univ. imp. Kioto9: 285–298.

    CAS  Google Scholar 

  • Otten, L. A. B. M., D. Vreugdenhil & R. A. Schilperoort, 1977. Properties of lysopine dehydrogenase from crown gall tumour tissue. Biochim. biophys. Acta485: 268–277.

    PubMed  CAS  Google Scholar 

  • Rossignol, G. & P. Dion, 1984. Octopine, nopaline, and octopinic acid utilization in Pseudomonas. Can. J. Microbiol.31: 68–74.

    Article  Google Scholar 

  • Sangster, A. W., S. E. Thomas & N. L. Tingling, 1975. Fish attractants from marine invertebrates. Tetrahedron31: 1135–1137.

    Article  CAS  Google Scholar 

  • Sato, M., Y. Sato & Y. Tsuchiya, 1977a. Studies on the extractives of molluscs: I. α-Iminodipropionic acid isolated from the squid muscle extract. Bull. Jpn. Soc. sci. Fish.43: 1077–1079 (in Japanese).

    Article  CAS  Google Scholar 

  • Sato, M., Y. Sato & Y. Tsuchiya, 1977b. Studies on the extractives of molluscs: II. celminodipropionic acid isolated from squid muscle extracts. Bull. Jpn. Soc. sci. Fish.43: 1441–1443 (in Japanese).

    Article  CAS  Google Scholar 

  • Sato, M., Y. Sato & Y. Tsuchiya, 1982. Distribution of meso-α- iminodipropionic acid and D-α-iminopropioacetic acid in a variety of aquatic organisms. Bull. Jpn. Soc. sci. Fish.48: 1411–1414.

    Article  CAS  Google Scholar 

  • Sato, M., N. Kanno & Y. Sato, 1985. Isolation of D-rhodoic acid from the abalone muscle. Bull. Jpn. Soc. sci. Fish.51: 1681–1683.

    Article  CAS  Google Scholar 

  • Sato, M., N. Kanno & Y. Sato, 1986. Biosynthesis of D-rhodoic acid in abalone. Bull. Jpn. Soc. sci. Fish.52: 1025–1027.

    Article  CAS  Google Scholar 

  • Sato, M. & G. Gade, 1986. Rhodoic acid dehydrogenase: a novel amino acid-linked dehydrogenase from muscle tissue of Haliotis species. Naturwissenschaften73: 207–208.

    Article  CAS  Google Scholar 

  • Schrimsher, J. L. & K. B. Taylor, 1982. Octopine dehydrogenase from crown gall tumor and from Pecten maximum. J. biol. Chem.257: 8953–8956.

    PubMed  CAS  Google Scholar 

  • Thoai, N. V. & Y. Robin, 1959. Metabolism of guanidylated derivatives. Biochim. biophys. Acta35: 446–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this paper

Cite this paper

Sato, M., Kanno, N., Sato, Y. (1987). Studies on the distribution and metabolism of D-rhodoic acid in algae. In: Ragan, M.A., Bird, C.J. (eds) Twelfth International Seaweed Symposium. Developments in Hydrobiology, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4057-4_67

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4057-4_67

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8301-0

  • Online ISBN: 978-94-009-4057-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics