Skip to main content

Abstract

Although inelastic response of solid materials at low stress levels has been observed and measured for over a century and a half (an account of the early work is given by Bell1), engineering thinking on material behavior has been dominated by the considerable success of the classical elastic and plastic theories. In contrast, the work on ‘dislocation dynamics’ in the 1950s and early 1960s by Johnston and Gilman2,3 and by Hahn4 and others was based on the concept of considering both elastic and plastic deformations to be generally non-zero at all stages of loading. Those formulations were one-dimensional and restricted to simple loading histories such as uniaxial extension and creep. One of the main interests in those studies was to obtain the form of the equations and the material constants from measurements of microstructural quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. F. Bell, The Experimental Foundations of Solid Mechanics, Encyclopedia of Physics, Vol. VIa/1, Springer-Verlag, New York, 1973.

    Google Scholar 

  2. W. G. Johnston and J. J. Gilman, Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals, J. Appl. Phys., 30 (1959) 129–44.

    Article  CAS  Google Scholar 

  3. J. J. Gilman, Dislocation mobility in crystals, J. Appl. Phys., 36 (1965) 3195.

    Article  CAS  Google Scholar 

  4. G. T. Hahn, A model for yielding with special reference to the yield point phenomena of iron and related B.C.C. metals, Acta Metall., 10 (1962) 727–38.

    Article  Google Scholar 

  5. S. R. Bodner, Constitutive equations for dynamic material behavior, in Mechanical Behavior of Materials Under Dynamic Loads, ed. U. S. Lindholm, Springer-Verlag, New York, 1968, pp. 176–90.

    Google Scholar 

  6. S. R. Bodner and Y. Partom, A large deformation elastic-viscoplastic analysis of a thick-walled spherical shell, ASME J. Appl. Mech., 39 (1972) 751–7.

    Article  Google Scholar 

  7. D. C. Stouffer and S. R. Bodner, A constitutive model for the deformation induced anisotropic plastic flow of materials, Int. J. Eng. Sci., 17 (1979) 757–64.

    Article  Google Scholar 

  8. S. R. Bodner and D. C. Stouffer, Comments on anisotropic plastic flow and incompressibility, Int. J. Eng. Sci., 21 (1983) 211–5.

    Article  Google Scholar 

  9. S. R. Bodner and A. Merzer, Viscoplastic constitutive equations for copper with strain rate history and temperature effects, ASME J. Eng. Mat. Tech., 100 (1978) 388–94.

    Article  CAS  Google Scholar 

  10. A. Merzer and S. R. Bodner, Analytical and computational repre-sentation of high rate of straining behavior, in Mechanical Properties of Materials at High Rates of Strain, ed. J. Harding, Inst. Physics Conf. Series, No. 47, London, 1979, pp. 142–51.

    Google Scholar 

  11. W. A. Spitzig, R. J. Sober and O. Redmond, The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implication for plasticity theory, Metall. Trans., 7A (1976) 1703–10.

    Article  Google Scholar 

  12. O. Richmond and W. A. Spitzig, Pressure dependence and dilatancy of plastic flow, in Proc. 15th Int. Congress of Theoretical and Applied Mechanics, ed. F. P. J. Rimrott and B. Tabarrok, North Holland, New York, 1980.

    Google Scholar 

  13. R. W. Klopp, R. J. Clifton, and T. G. Shawki, Pressure-shear impact and the dynamic viscoplastic response of metals, Mech. Mater., 4 (1985) 375–85.

    Article  Google Scholar 

  14. S. R. Bodner and Y. Partom, Dynamic inelastic properties of materials. Part II. Representation of time dependent properties of metals, Proc. Sth Congr. Int. Council Aeronautical Sciences (ICAS), Amsterdam, 1972.

    Google Scholar 

  15. S. R. Bodner and Y. Partom, Constitutive equations for elastic- viscoplastic strain-hardening materials, ASME J. Appl. Mech. 42 (1975) 385–9.

    Article  Google Scholar 

  16. S. R. Bodner, A procedure for including damage in constitutive equations for elastic-viscoplastic work-hardening materials, Proc. IUTAM Symp. Physical Nonlinearities in Structural Analysis, ed. J. Hult and J. Lemaitre, Springer-Verlag, Berlin, 1981, pp. 21–8.

    Google Scholar 

  17. E. T. Onat and F. Fardshisheh, On the state variable representation of mechanical behavior of elastic-plastic solids, Proc. Symp. Foundations of Plasticity, P. Noordhoff, Groningen, The Netherlands, 1973, pp. 89–115.

    Google Scholar 

  18. E. T. Onat, Representation of inelastic behavior in the presence of anisotropy and of finite deformations, in Recent Advances in Creep and Fracture of Engineering Materials and Structures, ed. B. Wilshire and D. R. J. Owen, Pineridge Press, Swansea, 1982, pp. 231–64.

    Google Scholar 

  19. A. R. S. Ponter, Dynamic behavior of structures composed of strain and work-hardening visco-plastic materials, Int. J. Solids Struct., 16 (1980) 793–806.

    Article  Google Scholar 

  20. H. Ghoneim, S. Matsouka and Y. Chen, Viscoplastic modelling with strain rate history dependence, ASME J. Appl. Mech., 50 (1983) 465–8.

    Article  Google Scholar 

  21. A. Merzer and S. R. Bodner, Analytical formulation of a rate and temperature dependent stress-strain relation, ASME J. Eng. Mat. Tech., 101 (1979) 254–7.

    Article  Google Scholar 

  22. J. L. Chaboche, Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals, Bull. Acad. Polon. Sci., Ser. Sci. Techn., 25 (1) (1977) 33–42.

    Google Scholar 

  23. F. A. Leckie and D. R. Hayhurst, Constitutive equations for creep rupture, Acta Metall., 25 (1977) 1059–70.

    Article  Google Scholar 

  24. S. R. Bodner, Evolution equations for anisotropic hardening and damage of elastic-viscoplastic materials, in Plasticity Today: Modelling, Methods and Applications, ed. A. Sawczuk and G. Bianchi, Elsevier Applied Science, Barking, 1984, pp. 471–82.

    Google Scholar 

  25. R. W. Rohde, Acta Metall., 17 (1969) 353.

    Article  Google Scholar 

  26. J. M. Kelly and P. P. Gillis, The influence of a limiting dislocation flux on the mechanical response of polycrystalline metals, Int. J. Solids Struct. 10 (1974) 45 - 59.

    Article  CAS  Google Scholar 

  27. A. M. Merzer, Steady and transient creep behavior based on unified constitutive equations, ASME J. Eng. Mat. Tech., 104 (1982) 18–25.

    Article  Google Scholar 

  28. D. C. Stouffer and S. R. Bodner, A relationship between theory and experiment for a state variable constitutive equation, in Mechanical Testing for Deformation Model Development, ASTM STP 765, Philadelphia, 1982, pp. 239–50.

    Google Scholar 

  29. D. C. Stouffer, A constitutive representation for IN-100, AFWAL-TR- 81-4039, Wright-Patterson AFB, Ohio, 1981.

    Google Scholar 

  30. M. B. Bever, D. L. Holt and A. L. Titchener, The stored energy of cold work, in Progress in Materials Science, ed. B. Chalmers, J. W. Christian and T. B. Massalski, 17 (1973) 1–190.

    Google Scholar 

  31. J. D. Morrow, Dept. of Theoretical and Applied Mechanics, Univ. Illinois, Champaign, private communication, 1979.

    Google Scholar 

  32. K. S. Chan, S. R. Bodner and U. S. Lindholm, Phenomenological modeling of hardening and thermal recovery in metals, Report on NASA Contract No. NAS 3-23925, Southwest Research Institute, San Antonio, Texas. ASME J. Eng. Mat. Tech. y (1986) submitted for publication.

    Google Scholar 

  33. U. F. Kocks, Laws for work-hardening and low temperature creep, ASME J. Eng. Mat. Tech., 98 (1976) 76–85.

    Article  CAS  Google Scholar 

  34. U. S. Lindholm, High Velocity Deformation of Solids, ed. K. Kawata and J. Shioiri, Springer-Verlag, Berlin, 1979, pp. 26–35.

    Google Scholar 

  35. S. R. Bodner, I. Partom and Y. Partom, Uniaxial cyclic loading of elastic-viscoplastic materials, ASME J. Appl. Mech., 46 (1979) 805–10.

    Article  Google Scholar 

  36. S. R. Bodner and K. S. Chan, Modelling of continuum damage for application in elastic-viscoplastic constitutive equations, J. Eng. Fract. Mech., 25 (1986) 705–12.

    Article  Google Scholar 

  37. U. S. Lindholm et al., Constitutive modeling for isotropic materials, Second Annual Status Report on NASA Contract No. NAS3-23925, Southwest Research Institute, San Antonio, Texas, also NASA Report CR-174980, 1985.

    Google Scholar 

  38. A. M. Rajendran, S. J. Bless and D. S. Dawicke, Evaluation of Bodner-Partom model parameters at high strain rates, ASME J. Eng. Mat. Tech., 108 (1986) 75–80.

    Article  CAS  Google Scholar 

  39. J. Aboudi, Elastoplasticity theory for porous materials, Mech. Mater., 3 (1984) 81–94.

    Article  Google Scholar 

  40. M. Newman, Z. Zaphir and S. R. Bodner, Finite element analysis for time dependent inelastic material behavior, J. Comput. Struct., 6 (1976) 157–62.

    Article  Google Scholar 

  41. Z. Zaphir and S. R. Bodner, Implementation of elastic-viscoplastic constitutive equations into ‘NONSAP’ with applications to fracture mechanics, in Proc. ADINA Conf, MIT Report 82448–9, ed. K. J. Bathe, August 1979.

    Google Scholar 

  42. Z. Zaphir, Analysis of an elastic-viscoplastic specimen with a crack, Ph.D. thesis, Tel Aviv Univ., 1983.

    Google Scholar 

  43. T. Hinnerichs, T. Nicholas and A. Palazotto, A hybrid experimental- numerical procedure for determining creep crack growth rates, Eng. Fract. Mech., 16 (1982) 265–77.

    Article  Google Scholar 

  44. J. Smail and A. N. Palazotto, The viscoplastic crack growth behavior of a compact tension specimen using the Bodner-Partom flow law, Eng. Fract. Mech., 19 (1984) 137–58.

    Article  Google Scholar 

  45. A. Sperling and Y. Partom, Numerical analysis of large elastic-plastic deformation of beams due to dynamic loading, Int. J. Solids Struct., 13 (1977) 865–76.

    Article  Google Scholar 

  46. J. Aboudi and S. R. Bodner, Dynamic response of a slab of elastic- viscoplastic material that exhibits induced plastic anisotropy, Int. J. Eng. ScL, 18 (1980) 801–13.

    Article  Google Scholar 

  47. S. R. Bodner and J. Aboudi, Stress wave propagation in rods of elastic-viscoplastic material, Int. J. Solids Struct., 19 (1983) 305–14.

    Article  Google Scholar 

  48. J. Aboudi and J. D. Achenbach, Arrest of mode III fast fracture by a transition from elastic to viscoplastic material properties, J. Appl. Mech., 48 (1981) 509–14.

    Article  Google Scholar 

  49. J. Aboudi and J. D. Achenbach, Numerical analysis of fast mode-I fracture of a strip of viscoplastic work-hardening material, Int. J. Fract., 21 (1983) 133–47.

    Article  Google Scholar 

  50. A. M. Merzer, Modelling of adiabatic shear band development from small imperfections, J. Mech. Phys. Solids, 30 (1982) 323–38.

    Article  Google Scholar 

  51. J. Aboudi, Effective constitutive equations for fiber-reinforced viscoplastic composites exhibiting anisotropic hardening, Int. J. Eng. Sei., 21 (1983) 1081–96.

    Article  Google Scholar 

  52. J. Aboudi, Effective behavior of inelastic fiber-reinforced composites, Int. J. Eng. Sei., 22 (1984) 439–49.

    Article  Google Scholar 

  53. J. Aboudi, Elastoplasticity theory for composite materials, Solid Mech. Arch., 11 (1986) 141–83.

    Google Scholar 

  54. T. M. Milly and D. H. Allen, A comparative study of nonlinear rate-dependent mechanical constitutive theories for crystalline solids at elevated temperatures, Report API-E-5-82, Virginia Polytechnic Institute and State University, March 1982.

    Google Scholar 

  55. S. J. Kim and J. T. Oden, Generalized flow potentials in finite elastoplasticity. II. Examples, Int. J. Eng. Sei., 23 (1985) 515–30.

    Article  Google Scholar 

  56. F. A. Leckie and E. T. Onat, Tensorial nature of damage measuring internal variables, in Proc. IUTAM Symp. Physical Non-linearities in Structural Analysis, ed. J. Hult and J. Lemaitre, Springer-Verlag, Berlin, 1981, pp. 140–55.

    Google Scholar 

  57. S. R. Bodner, Material modeling at high rates of strain. Proc. Int. Conf. on Impact Loading and Dynamic Behavior of Materials, Deutsche Gesellschaft für Metallkunde, Oberursel, FRG, 1987.

    Google Scholar 

  58. Y. Estrin and H. Mecking, An extension of the Bodner-Partom model of plastic deformation, Int. J. Plasticity, 2 (1986) 73–85.

    Article  Google Scholar 

  59. K. S. Chan et al., Constitutive modeling for isotropic materials, Third Annual Status Report on NASA Contract NAS 3-23925, Southwest Research Institute, San Antonio, Texas, also NASA Report CR-179522, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Elsevier Applied Science Publishers LTD

About this chapter

Cite this chapter

Bodner, S.R. (1987). Review of a Unified Elastic—Viscoplastic Theory. In: Miller, A.K. (eds) Unified Constitutive Equations for Creep and Plasticity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3439-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3439-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8039-2

  • Online ISBN: 978-94-009-3439-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics