Skip to main content

Some Thermal Aspects of Granulite History

  • Chapter
Granulites and Crustal Evolution

Part of the book series: NATO ASI Series ((ASIC,volume 311))

Abstract

Useful quantitative discussion of the physical processes associated with granulite formation requires reliable estimates of temperature, pressure and age for the metamorphism. The latter is essential and is commonly lacking. The processes by which slow cooling and fast cooling granulites form are likely to be different.

Application of a simple, analytical one-dimensional thermal model to the case of slow-cooling granulites shows that the most probable tectonic setting for their formation is non-extensional lithospheric thinning. The model shows that very slow cooling (i.e. over a number of tens of ma) requires that the metamorphic temperature experienced by the rock was not very much above the equilibrium temperature for that depth. Detailed analysis of any particular situation is sensitive to the variation of thermal diffusivity and radiogenic heat production in the lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artyushkov, E.V. and Baer, M.A., 1986. Mechanism of formation of hydrocarbon basins: the west Siberia, Volga-Urals, Timan-Pechora basins and the Permian basin of Texas. Tectonophysics 122: 247–282.

    Article  Google Scholar 

  • Ashworth, J.R. and Gunner, G.A., 1978. Coexisting garnet and cordierite in migmatites from the Scottish Caledonides. Contrib. Mineral. Petrol. 65: 379–394.

    Article  Google Scholar 

  • Carslaw, H.S. and Jaeger, J.C., 1979. Conduction of heat in solids (2nd Ed.). Oxford, Oxford University Press.

    Google Scholar 

  • England, P.C. and Richardson, S.W., 1977. The influence of erosion on the mineral facies of rocks from different metamorphic environments. J. Geol. Soc. (London) 134: 201–203.

    Article  Google Scholar 

  • Harrison, T.M. and McDougall, I., 1981. Excess 40Ar in metamorphic rocks from Broken Hill, New South Wales: implications for 40Ar/39Ar age spectra and the thermal history of the region. Earth Planet. Sci. Lett. 55: 123–149.

    Article  Google Scholar 

  • Houseman, G.A., McKenzie, D.P. and Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. 86: 6115–6132.

    Article  Google Scholar 

  • King, B.C., 1978. Structural and volcanic evolution of the Gregory Rift Valley. In: Geological Background to Fossil Man, ed. W.W. Bishop, Geol. Soc. London, Scottish Academic Press, Edinburgh: 29–54.

    Google Scholar 

  • Krogh, E.J., 1980. Compatible P-T conditions for eclogues and surrounding gneisses in the Kristiansund Area, Western Norway. Contrib. Mineral. Petrol. 75: 387–393.

    Article  Google Scholar 

  • Lachenbruch, A.H., 1968. Preliminary geothermal model of the Sierra Nevada. J. Geophys. Res. 73: 6977–6990.

    Article  Google Scholar 

  • Lovering, T.S., 1936. Heat conduction in dissimilar rocks and the use of thermal models. Bull. Geol. Soc. Amer. 47: 87–100

    Google Scholar 

  • McKenzie, D.P., 1978. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40: 25–32.

    Article  Google Scholar 

  • Mezger, K., (this volume). Geochronology in granulites. In: D. Vielzeuf and Ph. Vidal (Editors), Granulites and Crustal Evolution. NATO ASI Series, Kluwer.

    Google Scholar 

  • Morgan, W.J., 1972. Deep mantle convection plumes and plate motions. Bull. Amer. Ass. Petrol. Geol. 56: 203–213.

    Google Scholar 

  • Newton, R.C. and Perkins III, D., 1982. Thermodynamic calibration of geobaromcters based on the assemblages garnet-plagioclase- orthopyroxene (clinopyroxene)-quartz. Amer. Mineral. 67: 203–222.

    Google Scholar 

  • Oliver, G.J.H., 1977. Feldspathic hornblende and garnet granulites and associated anorthosite pegmatites from Doubtful Sound, Fiordland, New Zealand. Ph.D. thesis, Otago University (Dunedin, New Zealand).

    Google Scholar 

  • Oxburgh, E.R., 1978. Rifting in East Africa and large-scale tectonic processes. In: Geological Background to Fossil Man, ed. W.W. Bishop, Geol. Soc. London, Scottish Academic Press, Edinburgh: 7–18.

    Google Scholar 

  • Oxburgh, E.R., 1980. Heat flow and magma genesis. In: Physics of Magmatic Processes (ed. R.B. Hargraves), Ch. 5, Princeton University Press: 161–199.

    Google Scholar 

  • Oxburgh, E.R and England, P.C., 1980. Heat flow and the metamorphic evolution of the Eastern Alps. Eclogae geol. Helv., 73, 379–398.

    Google Scholar 

  • Percival, J.A. and Krogh, T.E., 1983. U-Pb zircon chronology of the Kapuskasing structural zone and vicinity in the Chapleau-Foleyet area, Ontario. Canad. J. Earth Sci. 20: 830–843.

    Article  Google Scholar 

  • Stevens, B.P.J., 1986. Post-depositional history of the Willyama Supergroup in the Broken Hill Block, NSW. Austr. J. Earth Sci. 33: 73–98.

    Article  Google Scholar 

  • Vielzeuf, D., 1984. Relations de phases dans le fades granulite el implications geodynamiques. L’exemple des granulites des Pyrenees. Thèse, Université de Clermont-Ferrand.

    Google Scholar 

  • Vielzeuf, D. and Kornprobst, J., 1984. Crustal splitting and the emplacement of Pyrenean lherzolites and granulites. Earth Planet. Sci. Lett. 67: 87–96.

    Article  Google Scholar 

  • Waters, D.J., 1989. Metamorphic evidence for the heating and cooling path of Namaqualand granulites. In: Evolution of Metamorphic Belts, eds. J.S. Daly, R.A. Cliff and B.W.D. Yardley, London, Geol. Soc. Spec. Publ. 42: 357–363.

    Google Scholar 

  • Wickham, S.M. and Oxburgh, E.R., 1987. Low-pressure regional metamorphism in the Pyrenees and its implications for the thermal evolution of rifted continental crust. Phil. Trans. R. Soc. Lond. A 321, 1557, 219–242.

    Article  Google Scholar 

  • Windrim, D.P. and McCulloch, M.T., 1986. Nd and Sr isotope systematics of central Australian granulites: chronology of crustal development and constraints on the evolution of lower continental crust. Contrib. Mineral. Petrol. 94: 289–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Oxburgh, E.R. (1990). Some Thermal Aspects of Granulite History. In: Vielzeuf, D., Vidal, P. (eds) Granulites and Crustal Evolution. NATO ASI Series, vol 311. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2055-2_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7422-3

  • Online ISBN: 978-94-009-2055-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics