Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 281))

Abstract

Three diverse modes of granulite formation, CO2-streaming, partial melting, and recrystallization of originally anhydrous rocks, can be aspects of the same process: movement of magmas through the lower crust. CO2-saturated silicic and mafic magmas can exsolve enough CO2 to dehydrate a volume of country rock approximately equal to 20%that of the magma itself. Consequently, movement of magmas through the crust can provide both the heat and the CO2 necessary for granulite metamorphism. Furthermore, silicic magmas emplaced into the deep crust are likely to produce anhydrous pyroxene-bearing cumulates (ie. charnockites) while more hydrous portions of the magma would be forced to migrateto shallower, cooler levels before they could crystallize to theH2O-saturated liquidus. Thus, magmas may form conduits by which CO2 of mantle origin is transported into the lower crust while H2O is extracted from the lower crust and moved to shallower levels. Evidencesupporting this hypothesis lies in the abundance of CO2 fluid inclusionsin clearly igneous charnockitic rocks, in the elevated geotherms suggested by P-T conditions of some granulites, and in the relict igneous features found in the highest grade areas of some granulite terranes. This theory implies that some felsic rocks with high K/Rb ratios may be cumulates, and that such K/Rb ratios are not diagnostic of CO2-fluxing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg, J. H., and Docka, J. A., 1983, ‘Geothermometry in the Kiglapait contact aureole, Labrador’ Am. J Sci. 283, 414–434.

    Article  Google Scholar 

  • Bohlen, S. R., 1987, ‘Pressure-teirperature-time paths and a tectonic model for the evolution of granulites’ J. Geol. 95, 617–632.

    Article  Google Scholar 

  • Bohlen, S.R., Valley, J.W., and Essene, E.J., 1985, ‘Metamorphism in the Adirondacks. I. Petrology, pressure and temperature’ J. Petrol. 26, 971–992.

    Google Scholar 

  • Bowers, T. S., and Helgeson, H. C., 1983, ‘Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures’ Geochim. Cosmochim. Acta. 47, 1247–1275.

    Article  Google Scholar 

  • Brey, G., 1976, ‘CO2 solubility and solubility mechanisms in silicate melts at high pressures’ Contrib. Mineral. Petrol. 57, 215–221.

    Article  Google Scholar 

  • Brown, G.C., and Fyfe, W.S., 1970, ‘The production of granitic melts during ultra-metamorphism’ Contrib. Mineral. Petrol. 28, 310–318.

    Article  Google Scholar 

  • Brown, G. C., and Fyfe, W. S., 1972, ‘The transition from metamorphism to melting status of granulite and eclogite facies’ Int. Geol. Cong. 24, Section 2, 27–34.

    Google Scholar 

  • Collerson, K. D., and Fryer, B. S., 1978, ‘The role of fluids in the formation and subsequent development of the early continental crust’ Contrib. Mineral. Petrol. 67, 151–167.

    Article  Google Scholar 

  • Des Marais, D.J., 1985, ‘Carbon exchange between the mantle and the crust and its effect upon the atmosphere: today compared to Archean time’ In E.T. Sundquist and W.S. Broecker, eds., The carbon cycle and atmospheric CO 2 : natural variations Archean to Present. AGU Geophysical monograph 32, 602–611.

    Chapter  Google Scholar 

  • Drury, S. A., 1980, ‘Lewisian pyroxene gneiss from Barra and the geochemistry of the Archean lower crust’ Scott. J. Geol. 16, 199–207.

    Article  Google Scholar 

  • Eggler, D. H., and Kadik, A. A., 1979, ‘The system NaAlSi3O8-H2O-CO2 to 20 kbar pressure: I. Compositional and thermodynamic relations of liquids and vapors coexisting with albite’ Am. Mineral. 64, 1036–1048.

    Google Scholar 

  • Eggler, D. H., and Rosenhauer, M., 1978, ‘Carbon dioxide in silicate melts: II. Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40kb’ Am. J. Sci. 278, 64–94.

    Article  Google Scholar 

  • Ellis, D. J., 1980, ‘Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust’ Contrib. Mineral. Petrol. 74, 201–210.

    Article  Google Scholar 

  • Field, D., Drury, A., and Cooper, D. C., 1980, ‘Rare earth and LTLE element fractionation in high grade charnockitic gneisses, South Norway’ Lithos 13, 281–289.

    Article  Google Scholar 

  • Field, D., Smalley, P. C., Laitib, R. C., and Raheim, A., 1985, ‘The 1.6 — 1.5 Ga old aitphibolite-granulite terrain, Bairible sector, Norway: dispelling the myth of regional Grenvillian orogenic reworking’ in A.C. Tobi and J.L.R. Touret, eds., The deep Proterozoic crust in the North Atlantic Province, NATO ASI C158, pp. 567–578.

    Google Scholar 

  • Fine, G., and Stolper, E., 1985, ‘The speciation of carbon dioxide in sodium aluminosilicate glasses’ Contrib. Mineral. Petrol. 91, 105–121.

    Article  Google Scholar 

  • Fine, G. and Stolper, E., 1986, ‘Dissolved carbon dioxide in basaltic glasses: concentrations and speciation’ Earth and Planet. Sci. Lett. 76, 263–278.

    Google Scholar 

  • Frost, B. R. and Frost, C. D., 1987, ‘CO2, melts, and granulite metamorphism’ Nature 327, 503–506.

    Article  Google Scholar 

  • Fuhrman, M.L., Frost, B.R., and Lindsley, D.H., in press, ‘The petrology of the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming’ J. Petrol.

    Google Scholar 

  • Fyfe, W. S., 1973, ‘The granulite facies, partial melting and the Archeancrust’ Phil. Trans. Royal. Soc. Lond. A273, 457–461.

    Google Scholar 

  • Goldberg, S.A., 1984, ‘Geochemical relationships between anorthosite and associated iron-rich rocks, Laramie Range, Wyoming’ Contrib. Mineral. Petrol. 87, 376–387.

    Article  Google Scholar 

  • Grant, J. A., 1986, ‘Quartz-phlogopite-liquid equilibria and theorigins of charnockites’ Am. Mineral. 71, 1071–1075.

    Google Scholar 

  • Grant, J.A. and Frost, B.R., 1986, ‘Decompression, metamorphism and melting in the aureole of the Laramie Anorthosite Complex’ Geol.Soc. Amer. Abstractsw. Programs 18, 620.

    Google Scholar 

  • Greenwood, H.J., 1975, ‘Buffering of pore fluids by metamorphic reactions’ Am. J. Sci. 273, 561–571.

    Article  Google Scholar 

  • Harley, S. L., 1986, ‘A sapphirine-cordierite-garnet-sillimanite granulite from Enderby Land Antarctica: Implications for IMAS petrogenetic grids in the granulite facies’ Contrib. Mineral. Petrol. 94, 452–460.

    Article  Google Scholar 

  • Harris, D. M., and Anderson, A. T., 1983, ‘Concentrations, sources, and losses of H2O, CO2, and S in Kilauean basalt’ Geochim.Cosmochim. Acta. 47, 1139–1150.

    Article  Google Scholar 

  • Harris, D. M., and Anderson, A. T., 1984, ‘Volatiles H2O, CO2, and Cl in a subduction related basalt’ Contrib. Mineral. Petrol. 87,120–128.

    Article  Google Scholar 

  • Harris, D. M., Sato, M., Casadevall, T. J., Rose, W. I., and Bornhorst, T. J., 1981, ‘Emission rates of CO2 from plumemeasurements’ U.S. Geol. Surv. Prof. Pap. 1250, 201–207.

    Google Scholar 

  • Heier, K. S., 1973, ‘Geochemistry of granulite facies rocks and problems of their origin’ Phil. Trans. Royal. Soc. Lond. A273, 429–442.

    Google Scholar 

  • Hoefs, J. and Touret, J, L. R., 1975, ‘Fluid inclusion and carbon isotopic study from Bairible granulites (south Norway): Apreliminary investigation’ Contrib. Mineral. Petrol. 52, 165–174.

    Article  Google Scholar 

  • Holland, J. G., and Lambert, R.StJ., 1975, ‘The chemistry and origin of the Lewisian gneisses of the Scottish mainland: the Scourie and Inver assemblages and sub-crustal accretion’ Precambrian Res. 2,161–188.

    Article  Google Scholar 

  • Hollister, L. S., 1975, ‘Granulite facies metamorphism in the Coast Range crystalline belt’ Can. J. Earth Sci. 12, 1953–1955.

    Article  Google Scholar 

  • Holloway, J. R., 1976, ‘Fluids in the evolution of granitic magmas: Consequences of finite CO2 solubility’ Geol. Soc. Amer. Bull. 87,1513–1518.

    Article  Google Scholar 

  • Holloway, J.R., and Lewis, C. F., 1974, ‘CO2 solubility in hydrous albite liquid at 5Kbar’ Trans. Amer. Geophys. Un. 55, 483.

    Google Scholar 

  • Holloway, J. R., Mysen, B. O., and Eggler, D. H., 1976, ‘The solubility of CO2 in liquids on the join CaO-MgO-SiO2-CO2Carnegie. Inst. Washington Yearbook 75, 626–631.

    Google Scholar 

  • Hopson, C.A., and Dellinger, D.A., 1987, ‘Evolution of four-dimensional compositional zoning, illustrated by the diapiric Duncan Hill Pluton, North Cascades, Washington’ Geol. Soc. Amer. Abstracts W. Programs 19, 707.

    Google Scholar 

  • Hubbard, F. H., and Whitley, J. E., 1979, ‘REE in charnockite andassociated rocks, southwest Sweden’ Lithos, 12, 1–11.

    Article  Google Scholar 

  • Hulsebosch, T. P., Koesterer, M. E., and Frost, B. R., 1985, ‘Late Archean intrusive charncckites from the west-central Wind River Mountains, Wyoming’ Geol. Soc. Amer. Abstractsw. Programs 17, 616.

    Google Scholar 

  • Jansen, J.B.H., Blok, R.J.P., Bos, A., and Scheelings, M., 1985,‘Geothermometry and geobarometry in Rogaland and preliminary results from the Bamble area, S. Norway’ In A.C. Tobi and J.L.R.Touret, eds., The deep Proterozoic crust in the North Atlantic Provinces, NATO ASI C158, pp. 499–516.

    Google Scholar 

  • Kadik, A. A., and Lukanin, O. A., Lebedev, Ye. B., Korovushkina, E.Ye., 1972, ‘Solubility of H2O and CO2 in granite and basalt meltsat high pressures’ Geochemistry Internat. 9, 1041,1050.

    Google Scholar 

  • Kadik, A. A., and Lukanin, O. A., 1973, ‘The solubility-dependent behavior of water and carbon dioxide in magmatic processes’ Geochemistry Internat. 10, 115–129.

    Google Scholar 

  • Koesterer, M. E., Frost, C. D., Frost, B. R., Hulsebosch, T. P.,Bridgwater, D., and Worl, R. C.,in press, ‘Development of theArchean crust in the Medina Mountain area, Wind River Mountains, Wyoming (U.S.A.)’ Precairibrian Res.

    Google Scholar 

  • Konnerup-Madsen, J., 1977, ‘Composition and microthermometry of fluid inclusions in the Kleivan Granite, South Norway’ Am. J. Sci. 277,637–696.

    Google Scholar 

  • Konnerup-Madsen, J., 1984, ‘Compositions of fluid inclusions in granites and quartz syenites from the Gadar continental rift province (South Greenland)’ Bull. Mineral. 107, 327–340.

    Google Scholar 

  • Konnerup-Madsen, J., Debussy, J., and Rose-Hansen, J., 1985, ‘Combined Raman microprobe spectrometry and microthemometry of fluid inclusions in minerals from Gadar province (south Greenland)’ Lithos 18, 271–280.

    Article  Google Scholar 

  • Konnerup-Madsen, J., and Rose-Hansen, J., 1982, ‘Volatiles associated with alkaline igneous rift activity: Fluid inclusions in the Ilimaussaq intrusion and the Gadar granitic complexes (South Greenland)’ Chem.Geol. 37, 79–93.

    Article  Google Scholar 

  • Lamb, R. C., Smalley, P. C., and Field, D., 1986, ‘P-T conditions forthe Arendal granulites, southern Norway: implications for the roles of P,T and CO2 in deep crustal LILE-depletion’ J. Metaroorphic Geol. 4, 143–160.

    Article  Google Scholar 

  • Lamb, W. and Valley, J., 1984, ‘Metairorphism of reduced granulites in low-CO2 vapour-free environment’ Nature 312, 56–58.

    Article  Google Scholar 

  • Lamb, W. and Valley, J., 1985, ‘C-O-H fluid calculations and granulitegenesis’ In A.C. Tobi and J. L. R. Touret, eds., The deep Proterozoic crust in the North Atlantic Provinces, NATO ASI, C158, pp.119–131.

    Google Scholar 

  • Lindsley, D.H., and Andersen, D.J., 1983, ‘A two-pyroxene thermometer’ J. Geophys. Res. 88, A887–A906.

    Article  Google Scholar 

  • Malm, O.A., and Ormaasen, D. E., 1978, ‘Mangerite-charnockite intrusives in the Lofoten-Vesteralen area, North Norway: petrography, chemistry and petrology’ Norges Geol. Undersok. 338, 38–114.

    Google Scholar 

  • Mysen, B. O., 1976, ‘The role of volatiles in silicate melts: Solubility of cartoon dioxide and water in feldspar, pyroxene, and feldspathoid melts to 30 kb and 1625°C’ Am. J. Sci. 276, 969–996.

    Article  Google Scholar 

  • Mysen, B. O., Arculus, R. J., and Eggler, D. H., 1975, ‘Solubility ofcartoon dioxide in melts of andésite, tholeiite, and olivine nephelinite composition’ Contrib. Mineral. Petrol. 53, 227–239.

    Article  Google Scholar 

  • Mysen, B. O., Eggler, D. H., Seitz, M. G., and Holloway, J. R., 1976, ‘Cartoon dioxide in silicate melts and crystals. Part I. Solubility measurements’ Am. J. Sci. 276, 455–479.

    Article  Google Scholar 

  • Nesbitt, H. W., 1980, ‘Genesis of the New Quebec and Adirondack granulites: Evidence for their production by partial melting’ Contrib. Mineral. Petrol. 72, 303–310.

    Article  Google Scholar 

  • Newton, R.C., 1983, ‘Geobarometry of high-grade metamorphic rocks’ Amer. J. Sci. 283-A, 1–28.

    Google Scholar 

  • Newton, R. C., and Hansen, E. C., 1983, ‘The origin of Proterozoic and late Archean charnockites - evidence from field relations and experimental petrology’ Geol. Soc. Amer. Mem. 161, 167–178.

    Google Scholar 

  • O’Hara, M. J., 1975, ‘Great thickness and high geothermal gradient ofArchean crust: the Lewisian of Scotland’ Inter. Conf. Geotherm. Geobarom ., Abstr., Perm. St. University, 127–128.

    Google Scholar 

  • Olarewaju, V. O., 1987, ‘Charnockite-granite association in SW Nigeria: rapakivi granite type and charnockitic plutonism in Nigeria?’ J. African Earth Sci. 6, 67–77.

    Article  Google Scholar 

  • O’Nions, R.K., and Oxburgh, E.R., 1983, ‘Heat and helium in the Earth’ Nature 306, 429–431.

    Article  Google Scholar 

  • Percival, J. A., 1983, ‘High-grade metamorphism in the Chapleau-Foleyet Area, Ontario’ Amer. Mineral. 68, 667–686.

    Google Scholar 

  • Petersen, J. S., 1980, ‘The zoned Kleivan granite — an end member of the anorthosite suite in southwest Norway’ Lithos 13, 79–95.

    Article  Google Scholar 

  • Phillips, G.N., and Wall, V.J., 1981, ‘Evaluation of prograde regional metamorphic conditions: their implications for the heat source and water activity during metamorphism in the Willyama Complex, Broken Hill, Australia’ Bull. Mineral. 104, 801–810.

    Google Scholar 

  • Pineau, F., Javoy, M., Behar, F., and Touret, J., 1981, ‘La geochimie isotopique du facies granulite du Bamble (Norvege) et l’originedes fluides carbones dans la croute profonde’ Bull. Mineral. 104,630–641.

    Google Scholar 

  • Raase, P., Raith, M., Ackermand, D., and Lai, R.K., 1986, ‘Progressive metamorphism of mafic rocks from greenschist to granulite facies in the Eharwar craton of South India’ J. Geol. 94, 261–282.

    Article  Google Scholar 

  • Roedder, E., 1965, ‘Liquid CO2 inclusions in olivine bearing nodules and phenocrysts from basalts’ Am. Mineral. 50, 1746–1782.

    Google Scholar 

  • Roedder, E., 1984, Fluid Inclusions Rev. in Mineral. 12, 503–532.

    Google Scholar 

  • Ross, D. C., 1985, ‘Mafic gneissic complex (batholithic root?) in thesouthernmost Sierra Nevada, Calif.’ Geol. 13, 288–291.

    Article  Google Scholar 

  • Rutherford, M. J., and Devine, J., 1986, ‘Experimental petrology of recent Mount St. Helens Dacites: Amphibole, Fe-Ti oxides and magma chamber conditions’ Geol. Soc. Amer. Abstracts w. Programs 18, 736.

    Google Scholar 

  • Sandiford, M. and Powell, R., 1986, ‘Deep crustal metamorphism during continental extension: Modern and ancient examples’ Earth and Planet. Sci. Lett. 79,151–158.

    Article  Google Scholar 

  • Sclater, J.G., Jaupart, C., and Galson, D., 1980, ‘The heat flow through oceanic and continental crust and the heat loss of the earth’ Rev. Geophys. 18, 269–311.

    Article  Google Scholar 

  • Sheridan, M. F. and Moore, C. B., 1981, ‘Carbon, nitrogen, and sulfur variations in the Bishop Tuff, California’ Lithos 14, 23–27.

    Google Scholar 

  • Skippen, G., and Trommsdorff, V., 1986, ‘The influence of NaCl and KCl on phase relations in metamorphosed carbonate rocks’ Am. J. Sci. 286, 81–104.

    Article  Google Scholar 

  • Smalley, P. C., Field, D., Lamb, R. C., and Clough, P. W. L.,1983,‘Rare earth, Th-Hf-Ta and large-ion lithophile element variations in metabasites from the Proterozoic amphibolite-granulite transition zone at Arendal, South Norway’ Earth and Planet. Sci. Lett. 63, 446–458.

    Article  Google Scholar 

  • Spera, F. J. and Bergman, S. C., 1980, ‘Carbon dioxide in igneous petrogenesis: I Aspects of the dissolution of CO2 in silicate liquids’ Contrib. Mineral. Petrol. 74, 55–66.

    Article  Google Scholar 

  • Sterner, S. M., and Bodner, R. J., 1984, ‘Synthetic fluid inclusions in natural quartz I. Compositional types synthesized andapplications to experimental petrology’ Geochim. Cosmochim. Acta. 48, 2659–2668.

    Article  Google Scholar 

  • Tarney, J. and Windley, B. F., 1977, ‘Chemistry, thermal gradients and theevolution of the lower continental crust’ J. Geol. Soc. Lond. 134, 153–172.

    Article  Google Scholar 

  • Tobi, A.C., Hermans, G.A.E.M., Maijer, C., and Jansen, J.B.H., 1985,‘Metamorphic zoning in the high-grade Proterozoic of Rogaland-Vest Agder, SW Norway’ In A.C. Tobi and J.L.R. Touret, eds., The deep Proterozoic crust in the North Atlantic Provinces, NATO ASIC158, 477–497.

    Google Scholar 

  • Touret, J., 1971, ‘Le facies granulite en Norvege meridionale. II. Les inclusions fluides’ Lithos 4, 423–436.

    Article  Google Scholar 

  • Touret, J., 1981, ‘Fluid inclusions in high grade metamorphic rocks’ In L. S. Hollister and M. C. Crawford, eds., Mineral. Assoc.Canada Short Course 6, 182–208.

    Google Scholar 

  • Touret, J. L. R., 1985, ‘Fluid regime in Southern Norway: The recordof fluid inclusions’ In A.C. Tobi and J. L. R. Touret, eds., The deep Proterozoic crust in the North Atlantic Province, NATO ASIC158, 517–549.

    Google Scholar 

  • Wells, P. R. A., 1979, ‘Chemical and thermal evolution of Archaean sialic crust, Southern West Greenland’ J. Petrol. 20, 187–226.

    Google Scholar 

  • Wiebe, R.A., 1979, ‘Fractionation and liquid immiscibility in an anorthositic pluton of the Nain Complex, Labrador’ J. Petrol. 20, 239–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Frost, B.R., Frost, C.D., Touret, J.L.R. (1989). Magmas as a Source of Heat and Fluids in Granulite Metamorphism. In: Bridgwater, D. (eds) Fluid Movements — Element Transport and the Composition of the Deep Crust. NATO ASI Series, vol 281. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0991-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0991-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6935-9

  • Online ISBN: 978-94-009-0991-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics