Skip to main content

Application of Molecular Markers in Spatial Analysis to Optimize In Situ Conservation of Plant Genetic Resources

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

There is a growing recognition of the need to evaluate the diversity status and trends of plant genetic resources’ use and maintenance in natural populations, farmers’ fields, home gardens and in other in situ settings to prioritize and optimize conservation actions and link these effectively with ex situ preservation approaches. The recent development of new powerful molecular tools that reveal many genome-wide polymorphisms has created novel opportunities for assessing genetic diversity, especially when these markers can be linked to key adaptive traits and are employed in combination with new geo-spatial methods of geographic and environmental analysis. New methods to prioritize varieties, populations and geographic areas for in situ conservation, and to enable monitoring of genetic diversity over time and space, are now available to support in situ germplasm management of annual crop and tree genetic resources. We will discuss concepts and examples of application of molecular markers and spatial analysis to optimize in situ conservation. We present a case study on the distribution and genetic diversity of the underutilized new world fruit tree crop cherimoya (Annona cherimola Mill.) in its Andean distribution range to exemplify the usefulness of combining molecular marker and spatial data to inform in situ conservation decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre-Gutiérrez J, Carvalheiro LG, Polce C et al (2013) Fit-for purpose: species distribution model performance depends on evaluation criteria–Dutch hoverflies as a case study. PLoS ONE 8: e63708

    Article  PubMed Central  PubMed  Google Scholar 

  • Aguirre-Gutiérrez J, Carvalheiro LG, Polce C et al (2013) Fit-for purpose: species distribution model performance depends on evaluation criteria—Dutch hoverflies as a case study. PLoS ONE 8:e63708

    Google Scholar 

  • Avise JC (2010) Perspective: conservation genetics enters the genomics era. Conserv Genet 11:665–669

    Article  Google Scholar 

  • Barry MB, Pham JL, Courtois B et al (2007) Rice genetic diversity at farm and village levels and genetic structure of local varieties reveal need for in situ conservation. Genet Resour Crop Ev 54:1675–1690

    Article  CAS  Google Scholar 

  • Bremer B, Bremer K, Chase MW et al (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Boshier DH, Gordon JE, Barrance AJ (2004) Prospects for circa situm tree conservation in Mesoamerican dry-forest agro-ecosystems. In: Frankie GW, Mata A, Vinson SB (eds) Biodiversity conservation in Costa Rica. University of California Press, Berkeley, pp 210–226

    Google Scholar 

  • Brown AHD, Hodgkin T (2008) Measuring, managing and maintaining crop genetic diversity on farm. In: Jarvis DI, Padoch C, Cooper HD (eds) Managing biodiversity in agricultural ecosystems, Columbia University Press, pp 13–33

    Google Scholar 

  • Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol Phylogenet Evol 59:523–537

    Article  PubMed  Google Scholar 

  • Chapman AD (2005) Principles and methods of data cleaning—primary species and species-occurrence data, version 1.0. Report for the Global Biodiversity Information Facility, Copenhagen

    Google Scholar 

  • CHERLA (2008) Inventory of current ex situ germplasm collections. Deliverable 7, Project no. 015100, INCO sixth framework programme

    Google Scholar 

  • Clement CR, De Cristo-Araújo M, Coppens D’EeckenbruggeGetal (2010) Origin and domestication of native Amazonian crops. Diversity 2010 2:72–106

    Article  Google Scholar 

  • Cleveland DA, Soleri D (2007) Extending Darwin’s analogy: bridging differences in concepts of selection between farmers, biologists, and plant breeders. Econ Bot 61:121–136

    Article  Google Scholar 

  • Cobben MMP, Verboom J, Opdam PFM et al (2011) Projected climate change causes loss and redistribution of genetic diversity in a model metapopulation of a medium-good disperser. Ecography 34:920–932

    Article  Google Scholar 

  • Dawson IK, Lengkeek A, Weber JC, Jamnadass R (2009) Managing genetic variation in tropical trees: linking knowledge with action in agroforestry ecosystems for improved conservation and enhanced livelihoods. Biodivers Conserv 18:969–986

    Article  Google Scholar 

  • Dawson IK, Vinceti B, Weber JC et al (2011) Climate change and tree genetic resource management: maintaining and enhancing the productivity and value of smallholder tropical agroforestry landscapes. A review. Agroforest Syst 81:67–78

    Article  Google Scholar 

  • Dawson IK, Guariguata MR, Loo J et al (2013) What is the relevance of smallholders’ agroforestry systems for conserving tropical tree species and genetic diversity in circa situm, in situ and ex situ settings? A review. Biodivers Conserv 22:301–324

    Article  Google Scholar 

  • de Haan S, Núñez J, Bonierbale M, Ghislain M (2009a) Species, morphological and molecular diversity of Andean potatoes in Huancavelica, central Peru. In: de Haan S (ed) Potato diversity at height: multiple dimensions of farmer-driven in-situ conservation in the Andes, PhD thesis, Wageningen University, The Netherlands, pp 35–58

    Google Scholar 

  • de Haan S, Bonierbale M, Juárez H et al (2009b) Annual spatial management of potato diversity in Peru’s central Andes. In: de Haan S (ed) Potato diversity at height: multiple dimensions of farmer-driven in-situ conservation in the Andes, PhD thesis, Wageningen University, The Netherlands, pp 91–115

    Google Scholar 

  • Eaton D, Windig J, Hiemstra SJ et al (2006) Indicators for livestock and crop biodiversity centre for genetic resources, CGN report 2006/05. Centre for Genetic Resources, CGN/DLO Foundation, Wageningen, The Netherlands

    Google Scholar 

  • Eding H, Crooijmans R (2002) Assessing the contribution of breeds to genetic diversity in conservation schemes. Genet Sel Evol 34:613–633

    Article  PubMed Central  PubMed  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2007) Molecular analysis of genetic diversity and geographic origin within an ex situ germplasm collection of cherimoya by using SSRs. J Am Soc Hortic Sci 132:357–367

    CAS  Google Scholar 

  • Escribano P, Viruel MA, Hormaza JI (2008) Development of 52 new polymorphic SSR markers from cherimoya (; Mill.). Transferability to related taxa and selection of a reduced set for DNA fingerprinting and diversity studies. Mol Ecol Resour 8:317–321

    Article  CAS  PubMed  Google Scholar 

  • Escudero A, Iriondo JM, Torres ME (2003) Spatial analysis of genetic diversity as a tool for plant conservation. Biol Conserv 113:351–365

    Article  Google Scholar 

  • Eshbaugh WH (2012) The taxonomy of the genus Capsicum. In: Russo VM (ed) Peppers, production and uses, CABI, pp 1–13

    Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Rome

    Google Scholar 

  • FAO (2011) Draft updated global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture. Fifth session of the Intergovernmental Technical Working Group on Plant Genetic Resources for Food and Agriculture, Rome, 27–29 April 2011

    Google Scholar 

  • Frankel OH, Brown AHD, Burdon J (1995a) The conservation of cultivated plants. In: Frankel OH, Brown AHD, Burdon J (eds) The conservation of plant biodiversity, 1st edn. Cambridge University Press, UK, pp 79–117

    Google Scholar 

  • Frankel OH, Brown AHD, Burdon J (1995b) The genetic diversity of wild plants. In: Frankel OH, Brown AHD, Burdon J (eds) The conservation of plant biodiversity, 1st edn. Cambridge University Press, UK, pp 10–38

    Google Scholar 

  • Gepts P (2003) Crop domestication as a long-term selection experiment. In: Janick J (ed) Plant breeding reviews 24 Part 2: Long-term selection: crops, animals, and bacteria, pp 1–44

    Google Scholar 

  • Graefe S, Dufour D, van Zonneveld M. (2013) Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition. Biodivers Conserv. doi:10.1007/s10531-012-0402-3

    Google Scholar 

  • Guarino L, Jarvis A, Hijmans RJ, Maxted N (2002) Geographic information systems (GIS) and the conservation and use of plant genetic resources. In: Engels JMM, Ramanatha RV, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. International Plant Genetic Resources Institute (IPGRI), Rome, pp 387–404

    Google Scholar 

  • Hansen MM, Olivieri I, Waller DM et al (2012) Monitoring adaptive genetic responses to environmental change. Mol Ecol 21:1311–1329

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688

    Article  PubMed  Google Scholar 

  • Hijmans RJ, van Etten J (2012) Geographic analysis and modeling with raster data. R package “Raster.” (http://cran.r-project.org/web/packages/raster/raster.pdf)

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2013) Species distribution modelling with R. R package “Dismo.” (http://cran.r-project.org/web/packages/dismo/dismo.pdf)

  • Hirota M, Holmgren M, van Nes EH, Scheffer M (2011) Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA, Sgró CN (2011) Climate change and evolutionary adaptation. Nature 479:479–485

    Article  Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth PM, Dawson IK, Goodall-Copestake WP et al (2005) Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia. Mol Ecol 14:497–501

    Article  CAS  PubMed  Google Scholar 

  • Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922

    Article  PubMed  Google Scholar 

  • Jarvis A, Touval JL, Castro SM (2010) Assessment of threats to ecosystems in South America. J Nat Conserv 18:180–188

    Article  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2013) A tutorial for the spatial analysis of principal components (sPCA) using adegenet 1.3–6. R vignette. http://cran.r-project.org/web/packages/adegenet/vignettes/adegenet-spca.pdf

  • Jombart T, Ahmed I, Cori A. (2013) Adegenet: an R package for the exploratory analysis of genetic and genomic data. R package “Adegenet.” http://cran.r-project.org/web/packages/adegenet/adegenet.pdf

  • Leberg PL (2002) Estimating allelic richness: Effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Lora J, Herrero M, Hormaza JI (2009) The coexistence of bicellular and tricellular pollen in Annona cherimola Mill. (Annonaceae): Implications for pollen evolution. Am J Bot 96:802–808

    Article  PubMed  Google Scholar 

  • Lora J, Hormaza JI, Herrero M (2010) The progamic phase of an early-divergent angiosperm, Annona cherimola (Annonaceae). Ann Bot 105:221–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lora J, Herrero M, Hormaza JI (2011) Stigmatic receptivity in a dichogamous early-divergent angiosperm species, Annona cherimola Mill. (Annonaceae). Influence of temperature and humidity. Am J Bot 98:265–274

    Article  PubMed  Google Scholar 

  • Lora J, Herrero M, Hormaza JI (2012) Pollen performance, cell number, and physiological state in the early-divergent angiosperm Annona cherimola Mill. (Annonaceae) are related to environmental conditions during the final stages of pollen development. Sex Plant Reprod 25:157–167

    Article  CAS  PubMed  Google Scholar 

  • Lowe AJ, Gillies ACM, Wilson J, Dawson IK (2000) Conservation genetics of bush mango from central/west Africa: implications from random amplified polymorphic DNA analysis. Mol Ecol 9:831–841

    Article  CAS  PubMed  Google Scholar 

  • Malhi Y, Aragao LEOC, Galbraith D et al (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci U S A 106:20610–20615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ et al (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J (in press)

    Google Scholar 

  • Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 2010 3:480–493

    Article  PubMed Central  Google Scholar 

  • Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    Article  CAS  PubMed  Google Scholar 

  • Miller A, Schaal B (2005) Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea. Proc Natl Acad Sci U S A 102:12801–12806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Allnut TR, Gillies ACM et al (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  Google Scholar 

  • Odong TL, van Heerwaarden J, Jansen J et al (2011) Statistical techniques for defining reference sets of accessions and microsatellite markers. Crop Sc 51 doi:10.2135/cropsci2011.02.0095.

    Google Scholar 

  • Ouborg NJ, Pertoldi C, Loeschcke V et al (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187

    Article  CAS  PubMed  Google Scholar 

  • Pascual L, Perfectti F, Gutierrez M, Vargas AM (1993) Characterizing isozymes of Spanish cherimoya cultivars. HortScience 28:845–847

    CAS  Google Scholar 

  • Palmberg-Lerche C (2008) Thoughts on the conservation of forest biological diversity and forest tree and shrub genetic resources. J Trop For Sci 20:300–312

    Google Scholar 

  • Perfectti F, Pascual L (1998) Characterization of cherimoya germplasm by isozyme markers. Fruit Varieties J 52:53–62

    Google Scholar 

  • Perfectti F, Pascual L (2005) Genetic diversity in a worldwide collection of cherimoya cultivars. Genet Resour Crop Ev 52:959–966

    Article  CAS  Google Scholar 

  • Perry L (2012) Ethnobotany. In: Russo VM (ed) Peppers, production and uses, CABI, pp 1–13

    Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Hu FS, Dicks CW (2008) Forests of the past: a window to future changes. Science 320:1450–1452

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pinhasi R, Fort J, Ammerman AJ (2005) Tracing the origin and spread of agriculture in Europe. PLoS Biol 3:2220–2228

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popenoe W (1921) The native home of the cherimoya. J Hered 12:331–336

    Google Scholar 

  • Popenoe H, King SR, León J et al (1989) Cherimoya. In: Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington, DC, pp 228–239

    Google Scholar 

  • Ræbild A, Larsen AS, Jensen JS et al (2011) Advances in domestication of indigenous fruit trees in the West African Sahel. New Forest 41:297–315

    Article  Google Scholar 

  • Ramachandran S, Deshpande O, Roseman CC et al (2005) Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci U S A 102:15942–15947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Russell J, Dawson IK, Flavell AJ et al (2011) Analysis of > 1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol 191:564–578

    Article  PubMed  Google Scholar 

  • Russell J, van Zonneveld M, Dawson IK et al (2013) Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-lgm range expansion and limited mid-future climate threats. PloS ONE under review

    Google Scholar 

  • Samuel AF, Drucker AG, Andersen SB et al (2013) Development of a cost-effective diversity-maximizing decision-support tool for in situ crop genetic resources conservation: The case of Cacao. Ecol Econ under review

    Google Scholar 

  • Scheldeman X, Van Damme P, Ureña Alvarez JV, Romero Motoche JP (2003) Horticultural potential of Andean fruit crops exploring their centre of origin. Acta Hortic 598:97–102

    Google Scholar 

  • Scheldeman X, van Zonneveld M (2010) Training manual on spatial analysis of plant diversity and distribution. Bioversity International, Rome, Italy

    Google Scholar 

  • Schueler S, Kapeller S, Konrad H et al (2012) Adaptive genetic diversity of forest trees: promise for future forests and a threatened resource—a case study on Norway spruce in Austria. Biodivers Conserv. doi:10.1007/s10531-012-0313-3

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 227:1063–1066

    Article  Google Scholar 

  • Thomas E, van Zonneveld M, Loo J et al (2012) Present spatial diversity patterns of Theobroma cacao L. in the Neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One 7:e47676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuberosa R, Graner A, Varshney RK (2011) Genomics of plant genetic resources: an introduction. Plant Genet Resour 9:151–154

    Article  Google Scholar 

  • Van Damme P, Scheldeman X (1999) Promoting cultivation of cherimoya in Latin America. Unasylva 198:43–47

    Google Scholar 

  • Van Damme V, Gómez-Paniagua H, De Vicente MC (2010) The GCP molecular marker toolkit, an instrument for use in breeding food security crops. Mol Breeding 28:597–610

    Article  Google Scholar 

  • van de Wouw M, Kik C, van Hintum T et al (2010a) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15

    Article  Google Scholar 

  • van de Wouw M, van Hintum T, Kik C et al (2010b) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120:1241–1252

    Article  Google Scholar 

  • van Etten J, Hijmans RJ (2010) A geospatial modelling approach integrating archaeobotany and genetics to trace the origin and dispersal of domesticated plants. PLoS One 5:e12060

    Article  PubMed Central  PubMed  Google Scholar 

  • van Heerwaarden J, Hellin J, Visser RF, Eeuwijk FA van (2009) Estimating maize genetic erosion in modernized smallholder agriculture. Theor Appl Genet 119:875–888

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanhove W, Van Damme P (2009) Marketing of cherimoya in the Andes for the benefit of the rural poor and as a tool for agrobiodiversity conservation. Acta Hortic 806:497–504

    Google Scholar 

  • Vanhove W, Van Damme P (2013) On-farm conservation of cherimoya (Annona cherimola Mill.) germplasm diversity. A value chain perspective. Trop Conserv Sci 6:158–310

    Google Scholar 

  • van Zonneveld M, Thomas E, Galluzzi G, Scheldeman X (2011) Chapter 15/16: Mapping the ecogeographic distribution of biodiversity and GIS tools for plant germplasm collectors. In: Guarino L, Ramanatha RV, Goldberg E (eds) Collecting Plant Genetic Diversity: Technical Guidelines—2011 Update, Bioversity International, Rome, Italy (http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=662)

  • van Zonneveld M, Scheldeman X, Escribano P et al (2012) Mapping genetic diversity of Cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS One 7:e29845

    Article  PubMed Central  PubMed  Google Scholar 

  • Viruel MA, Hormaza JI (2004) Development, characterization and variability analysis of microsatellites in lychee (; Sonn., Sapindaceae). Theor Appl Genet 108:896–902

    Article  CAS  PubMed  Google Scholar 

  • Vinceti B, Loo J, Gaisberger H, et al (2013) Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PLoS ONE 8: e59987.

    Google Scholar 

  • Vranckx G, Jacquemyn H, Muys B, Honnay O (2011) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237

    Article  PubMed  Google Scholar 

  • Waltari E, Hijmans RJ, Peterson AT et al (2007) Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2:e563

    Article  PubMed Central  PubMed  Google Scholar 

  • Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269

    Article  PubMed  Google Scholar 

  • Willis F, Moat J, Paton A (2003) Defining a role for herbarium data in Red List assessments: a case study of Plectranthus from eastern and southern tropical Africa. Biodivers Conserv 12:1537–1552

    Article  Google Scholar 

  • Wolters B (1999) Zur Verbreitungsgeschichte und Ethnobotanik indianischer Kultursplanfzen, insbesondere des Kakaobaumes. Angew Bot 73:128–137

    Google Scholar 

  • Worthington M, Soleri D, Aragón-Cuevas F, Gepts P (2012) Genetic composition and spatial distribution of farmer-managed Phaseolus bean planting: an example from a village in Oaxaca, Mexico. Crop Sc 52:1721–1735

    Article  Google Scholar 

Download references

Acknowledgements

We thank Patrick Van Damme for his comments on an early version of this chapter. Maarten van Zonneveld thanks the CGIAR research programs Forest, Trees and Agroforestry (FTA) and Climate Change for Agriculture and Food Security (CCAFS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van Zonneveld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Zonneveld, M. et al. (2014). Application of Molecular Markers in Spatial Analysis to Optimize In Situ Conservation of Plant Genetic Resources. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_4

Download citation

Publish with us

Policies and ethics