Skip to main content

Advances in Nicotiana Genetic and “Omics” Resources

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

The importance of the genus Nicotiana is both economic, as it contains species which are major cash crops, and scientific, as many of the species’ genomes are highly complex due to their evolutionary history. Investigating these species has been accelerated by advances in “Omics” techniques; these high-throughput methods, nucleic acid sequencing in particular, have led to an explosion in the volume of data available.

Here we provide an overview of how these data are organized and stored as public genome resources, as well as how Nicotiana researchers can mine or otherwise use these data to answer scientific questions, such as by constructing microarrays from expressed sequence tag (EST) and genomic data. We further examine past sequencing efforts, such as the Tobacco Genome Initiative (TGI), and the objectives and progress of current projects in the field, in particular for N. tabacum, N. sylvestris, N. tomentosiformis, and N. benthamiana, which are part of the SOL100 target list. We look at how these data can be leveraged in the future, as for example by using genomic sequences for proteogenomics, or creating species-specific metabolic pathway repositories generated from genome annotation data. Nicotiana genetic and “Omics” resources can be used to improve breeding strategies to obtain desirable traits such as disease and stress resistance, yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The WGP technology is covered by patents and patent applications owned by Keygene N.V. WGP and KeyGene are (registered) trademarks of Keygene N.V.

References

  • Arakaki AK, Huang Y, Skolnick J (2009) EFICAz2: enzyme function inference by a combined approach enhanced by machine learning. BMC Bioinformatics 10:107

    Article  PubMed Central  PubMed  Google Scholar 

  • Bancroft I, Morgan C, Fraser F et al (2011) Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762–766

    Article  CAS  PubMed  Google Scholar 

  • Bindler G, van der Hoeven R, Gunduz I et al (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349

    Article  CAS  PubMed  Google Scholar 

  • Bindler G, Plieske J, Bakaher N et al (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123:219–230

    Article  PubMed Central  PubMed  Google Scholar 

  • Bombarely A, Menda N, Tecle IY et al (2011) The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res 39:1149–1155

    Google Scholar 

  • Boyko A, Kovalchuk I (2011) Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Mol Plant 4:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Broeckling CD, Li K-G, Xie D-Y (2012) Comparative Metabolomics of Transgenic Tobacco Plants (Nicotiana tabacum var. Xanthi) Reveals Differential Effects of Engineered Complete and Incomplete Flavonoid Pathways on the Metabolome. In: Çiftçi YÖ (ed) Transgenic Plants—Advances and Limitations. InTech

    Google Scholar 

  • Burk L, Gerstel D, Wernsman E (1979) Maternal haploids of Nicotiana tabacum L. from seed. Science 206:585–585

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Knapp S, Cox AV et al (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127

    Article  CAS  PubMed  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Choi YH, Verberne M et al (2004) Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 65:857–864

    Article  CAS  PubMed  Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A et al (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    Article  CAS  PubMed  Google Scholar 

  • Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Zhang ST, Yang HJ et al (2011) Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol 11:76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RR (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    Article  CAS  PubMed  Google Scholar 

  • Davalieva K, Maleva I, Filiposki K et al (2010) Genetic Variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity 2:439–449

    Article  CAS  Google Scholar 

  • Denduangboripant J, Piteekan T, Nantharat M (2010) Genetic polymorphism between tobacco cultivar-groups revealed by amplified fragment length polymorphism analysis. J Agricul Sci 2:41

    Google Scholar 

  • Duby G, Degand H, Faber AM, Boutry M (2010) The proteome complement of Nicotiana tabacum Bright-Yellow-2 culture cells. Proteomics 10:2545–2550

    Article  CAS  PubMed  Google Scholar 

  • Ducret A, Van Oostveen I, Eng JK et al (1998) High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 7:706–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards KD, Bombarely A, Story GW et al (2010) TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics 11:142

    Article  PubMed Central  PubMed  Google Scholar 

  • Eich E (2008) Solanaceae and Convolvulaceae: Secondary Metabolites: Biosynthesis, Chemotaxonomy, Biological and Economic Significance (A Handbook). Springer

    Google Scholar 

  • Ettenhuber C, Radykewicz T, Kofer W et al (2005) Metabolic flux analysis in complex isotopolog space. Recycling of glucose in tobacco plants. Phytochemistry 66:323–335

    Article  CAS  PubMed  Google Scholar 

  • Farhi M, Marhevka E, Ben-Ari J et al (2011) Generation of the potent anti-malarial drug artemisinin in tobacco. Nat Biotechnol 29:1072–1074

    Article  CAS  PubMed  Google Scholar 

  • Fricano A, Bakaher N, Del CM (2012) Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet 13:18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu SL, Tang ZX, Liu L et al (2012) Variation of genomic DNA methylation in the nitrate reductase gene of sibling tobacco (Nicotiana tabacum) cultivars. Genet Mol Res 11:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Geelen DN, Inze DG (2001) A bright future for the bright yellow-2 cell culture. Plant Physiol 127:1375–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964

    Article  CAS  PubMed  Google Scholar 

  • Gomez AB, Vrebalov J, Moffett P et al (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–30

    Google Scholar 

  • Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21:1015–1026

    CAS  PubMed  Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica 16:102–135

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G et al (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics 2008

    Google Scholar 

  • Hummel J, Niemann M, Wienkoop S et al (2007) ProMEX: a mass spectral reference database for proteins and protein phosphorylation sites. BMC Bioinformatics 8:216

    Article  PubMed Central  PubMed  Google Scholar 

  • Ivanov NV, Sierro N, Gadani F, Peitsch MC (2010) Current State of Tobacco Genome Sequencing. In Plant and Animal Genome XVIII Conference

    Google Scholar 

  • Jaffe JD, Berg HC, Church GM (2004) Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4:59–77

    Article  CAS  PubMed  Google Scholar 

  • Julio E, Denoyes-Rothan B, Verrier JL, Dorlhac de Borne F (2006) Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breeding 18:69–91

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:109–114

    Google Scholar 

  • Karp PD, Paley S, Romero P (2002a) The Pathway Tools software. Bioinformatics 18(1):225–232

    Article  Google Scholar 

  • Karp PD, Riley M, Paley SM, Pellegrini-Toole A (2002b) The MetaCyc Database. Nucleic Acids Res 30:59–61

    Article  CAS  Google Scholar 

  • Karp PD, Riley M, Saier M et al (2000) The EcoCyc and MetaCyc databases. Nucleic Acids Res 28:56–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly LJ, Leitch AR, Clarkson JJ et al (2010) Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae). Mol Biol Evol 27:781–799

    Article  CAS  PubMed  Google Scholar 

  • Khan MQ, Narayan R (2007) Phylogenetic diversity and relationships among species of genus Nicotiana using RAPDs analysis. Afr J Biotechnol 6

    Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 53:73–82

    Article  Google Scholar 

  • Kole C (ed) (2011) Wild Crop Relatives: Genomic and Breeding Resources. Springer-Verlag

    Google Scholar 

  • Leitch IJ, Hanson L, Lim KY et al (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis RS (2011) Nicotiana. Wild crop relatives: genomic and breeding resources. 185–208

    Google Scholar 

  • Lewis RS, Kernodle SP (2009) A method for accelerated trait conversion in plant breeding. Theor Appl Genet 118:1499–1508

    Article  PubMed  Google Scholar 

  • Lewis RS, Milla SR, Levin JS (2005) Molecular and genetic characterization of Nicotiana glutinosa L. chromosome segments in tobacco mosaic virus-resistant tobacco accessions. Crop sci 45:2355–2362

    Article  CAS  Google Scholar 

  • Lin Y, Wagner G (1994) Surface disposition and stability of pest-interactive, trichome-exuded diterpenes and sucrose esters of tobacco. J chem ecolo 20:1907–1921

    Article  CAS  Google Scholar 

  • Li Q, Zhao C, Li Y et al (2011a) Liquid chromatography/mass spectrometry-based metabolic profiling to elucidate chemical differences of tobacco leaves between Zimbabwe and China. J Sep Sci 34:119–126

    Article  Google Scholar 

  • Li Y, Pang T, Wang X et al (2011b) Gas chromatography-mass spectrometric method for metabolic profiling of tobacco leaves. J Sep Sci 34:1447–1454

    Article  CAS  Google Scholar 

  • Ling HY, Edwards AM, Gantier MP et al (2012) An interspecific Nicotiana hybrid as a useful and cost-effective platform for production of animal vaccines. PLoS One 7:35688

    Article  Google Scholar 

  • Liu XZ, ShenHe C, Yang YM, ZHang HY (2009) Genetic diversity among flue-cured tobacco cultivars on the basis of AFLP markers. Czech J Genet Plant Breed 45:155–159

    CAS  Google Scholar 

  • Mahalingam G, Meyers BC (2010) Computational methods for comparative analysis of plant small RNAs. Methods Mol Biol 592:163–181

    Article  CAS  PubMed  Google Scholar 

  • Martin F (2011) An application of kernel methods to variety identification based on SSR markers genetic fingerprinting. BMC Bioinforma 12:177

    Article  Google Scholar 

  • Martin F, Bovet L, Cordier A et al (2012) Design of a tobacco exon array with application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC Genomics 13:674

    Google Scholar 

  • Matsuoka K, Demura T, Galis I et al (2004) A comprehensive gene expression analysis toward the understanding of growth and differentiation of tobacco BY-2 cells. Plant Cell Physiol 45:1280–1289

    PubMed  Google Scholar 

  • Milla SR, Levin JS, Lewis RS, Rufty RC (2005) Rapd and scar markers linked to an introgressed gene conditioning resistance to D.b. Adam. in Tobacco. Crop Sci 45:2346–2354

    Article  CAS  Google Scholar 

  • Millar DJ, Whitelegge JP, Bindschedler LV et al (2009) The cell wall and secretory proteome of a tobacco cell line synthesising secondary wall. Proteomics 9:2355–2372

    Article  CAS  PubMed  Google Scholar 

  • Misra P, Pandey A, Tiwari M et al (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon H, Nicholson J (2007) AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop science 47:1887–1894

    Article  CAS  Google Scholar 

  • Moon HS, Nifong JM, Nicholson JS et al (2009) Microsatellite-based Analysis Of Tobacco (L.) Genetic Resources. Crop Sci 49:2149–2159

    Article  CAS  Google Scholar 

  • Murad L, Lim KY, Christopodulou V et al (2002) The origin of tobacco’s T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89:921–928

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Hasewa S, Inzé D (eds) (2004) Tobacco BY-2 Cells. Springer

    Google Scholar 

  • Naim F, Nakasugi K, Crowhurst RN et al (2012) Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS One 7:e52717

    Google Scholar 

  • Nicholson J, Lewis R, van der Hoeven R et al (2009) Microsatellite-based analysis of Tobacco (L.) genetic resources. Crop sci 49:2149–2159

    Article  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) ʻMetabonomicsʼ: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  • Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151:1570–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren N, Timko MP (2001) AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome 44:559–571

    Article  CAS  PubMed  Google Scholar 

  • Renny-Byfield S, Chester M, Kovarik A et al (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Rodgman A, Perfetti TA (2008) The chemical components of tobacco and tobacco smoke. CRC

    Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S et al (2008a) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295

    Article  CAS  Google Scholar 

  • Rushton PJ, Bokowiec MT, Laudeman TW et al (2008b) TOBFAC: the database of tobacco transcription factors. BMC Bioinformatics 9:53

    Article  Google Scholar 

  • Sarala K, Rao RVS (2008) Genetic diversity in Indian FCV and burley tobacco cultivars. J genet 87:159–163

    CAS  Google Scholar 

  • Seidler J, Zinn N, Boehm ME, Lehmann WD (2010) De novo sequencing of peptides by MS/MS. Proteomics 10:634–649

    Article  CAS  PubMed  Google Scholar 

  • Sierro N, Van Oeveren J, van Eijk MJ et al (2013) Whole genome profiling physical map and ancestral annotation of tobacco hicks broadleaf. Plant J 75:880–889

    Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Tian W, Arakaki AK, Skolnick J (2004) EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Res 32:6226–6239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Oeveren J, de Ruiter M, Jesse T et al (2011) Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Res 21:618–625

    Article  PubMed Central  PubMed  Google Scholar 

  • Vontimitta V, Danehower DA, Steede T et al (2010) Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. J Agric Food Chem 58:294–300

    Article  CAS  PubMed  Google Scholar 

  • Vontimitta V, Lewis RS (2012) Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Molecular Breeding. 1–10

    Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658–666

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wernsman EA, Rufty RC (1987) Tobacco. In: Fehr WR (ed) Principles of cultivar development Volume 2 Crop species. Macmillan publishing company

    Google Scholar 

  • Wienkoop S, Staudinger C, Hoehenwarter W et al (2012) ProMEX—a mass spectral reference database for plant proteomics. Front Plant Sci 3:125

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D et al (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y et al (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120:809–827

    Article  PubMed  Google Scholar 

  • Zhang P, Dreher K, Karthikeyan A et al (2010) Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol 153:1479–1491

    Google Scholar 

  • Zhao JH, Zhang JS, Wang Y et al (2011) DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance. J Zhejiang Univ Sci B 12:935–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman JL, Goldberg RB (1977) DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma 59:227–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai V. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Battey, J., Sierro, N., Bakaher, N., Ivanov, N. (2014). Advances in Nicotiana Genetic and “Omics” Resources. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7572-5_21

Download citation

Publish with us

Policies and ethics