Skip to main content

Proteomic Approaches to Analyze Wheat-Fusarium graminearum Interaction

  • Chapter
  • First Online:
Fusarium Head Blight in Latin America

Abstract

Fusarium graminearum, the causal agent of Head Blight of wheat, was the third filamentous fungus to have a complete genome sequenced, becoming a model for studies of genomics, transcriptomics, proteomics and metabolomics of the plant-pathogen interaction associated with this devastating disease. In modern fungal biology, the major challenge is be able to understand the expression, function and regulation of the entire set of proteins encoded by fungal genomes. Proteomics, in combination with other omics techniques, constitutes a powerful tool for providing important information to understand plant-fungal interactions, pathogenesis and fungal colonization, allowing more solid interpretations on the complex mechanisms involved in the process of infection by Fusarium species, as well as mechanisms of host resistance intended to avoid infection. The present chapter summarizes the current worldwide status of proteomics focusing on F. graminearum-wheat interaction, provided that, at present, there are no revisions regarding this issue available. Besides, this chapter intends to provide initial research on proteomics of F. graminearum pathogenesis in wheat in Latin America, since this area of research is scarcely developed in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defence. Annu Rev Phytopathol 42:385–414

    Article  PubMed  CAS  Google Scholar 

  • Bhadauria V, Zhao W-S, Wang L-X, Zhang Y, Liu J-H, Yang J, Kong L-A, Peng Y-L (2007) Advances in fungal proteomics. Microbiol Res 162:193–200

    Article  PubMed  CAS  Google Scholar 

  • Bhadauria V, Banniza S, Wang L-X, Wei Y-D, Peng Y-L (2010) Proteomic studies of phytopathogenic fungi, oomycetes and their interactions with hosts. Eur J Plant Pathol 126:81–95

    Article  Google Scholar 

  • Brown NA, Antoniw J, Hammond-Kosack KE (2012) The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One 7(4):e33731. doi:10.1371/journal.pone.0033731

    Article  PubMed  CAS  Google Scholar 

  • Bruneau JM, Magnin T, Tagat E, Legrand R, Bernard M, Diaquin M, Fudali C, Latgé JP (2001) Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis 22:2812–2823

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  PubMed  CAS  Google Scholar 

  • Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond- Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O’donnell K, Ouellet T, Qi W, Quesneville H, Roncero MI, Seong KY, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    Article  PubMed  CAS  Google Scholar 

  • El-Gendy W, Brownleader MD, Ismail H, Clarke PJ, Gilbert J, El-Bordiny F, Trevan M, Hopkins J, Naldrett M, Jackson P (2001) Rapid deposition of wheat cell wall structural proteins in response to Fusarium-derived elicitors. J Exp Bot 54:85–90

    Article  Google Scholar 

  • Foroud N, Laroche A, Jordan M, Ellis B, Eudes F (2008) Fusarium graminearum and trichothecene induced differential transcriptomics and proteomics in resistant and susceptible wheat genotype. B Cereal Res Commun 36:239–243

    Article  Google Scholar 

  • Geddes J, Eudes F, Laroche A, Selinger BL (2008) Differential expression of proteins in response to the interaction between the pathogen Fusarium graminearum and its host Hordeum vulgare. Proteomics 8:545–554

    Article  PubMed  CAS  Google Scholar 

  • González-Fernández R, Jorrin-Novo JV (2012) Contribution of proteomics to the study of plant pathogenic fungi. J Proteome Res 11:3–16

    Article  PubMed  Google Scholar 

  • González-Fernández R, Prats E, Jorrín-Novo J (2010) Proteomics of plant pathogenic fungi. J Biomed Biotechnol 2010:1–36

    Google Scholar 

  • Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    Article  PubMed  CAS  Google Scholar 

  • Hallen-Adams HE, Cavinder BL, Trail F (2011) Fusarium graminearum from expression analysis to functional assays. In: Jin-Rong X, Bluhm H (eds) Fungal genomics: methods and protocols, methods in molecular biology, vol 722. Springer, New York, pp 79–101

    Chapter  Google Scholar 

  • Hou ZM, Xue CY, Peng YL, Katan T, Kistler HC, Xu JR (2002) A mitogen activated protein kinase gene (MGVI) in Fusarium graminearum is required for female fertility, heterokaryon formation and plant infection. Mol Plant Microbe Interact 15:1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2007) Proteomics of filamentous fungi. Trends Biotechnol 25:395–400

    Article  PubMed  CAS  Google Scholar 

  • Kwon SJ, Cho S-Y, Mi Lee K-M, Yu J, Son M, Kim K-H (2009) Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res 144:96–106

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Kim YK, Yun SH, Lee YW (2008) Identification of differentially expressed proteins in a mat1-2-deleted strain of Gibberella zeae, using a comparative proteomics analysis. Curr Genet 53:175–184

    Article  PubMed  CAS  Google Scholar 

  • Lim D, Hains P, Walsh B, Bergquist P, Nevalainen H (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–909

    Article  PubMed  CAS  Google Scholar 

  • Lopez MF, Berggren K, Chernokalskaya E, Lazarev A, Robinson M, Patton WF (2000) A comparison of silver stain and SYPRORuby Protein Gel Stain with respect to protein detection in two dimensional gels and identification by peptide mass profiling. Electrophoresis 21:3673–3683

    Article  PubMed  CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  PubMed  CAS  Google Scholar 

  • Medina ML, Haynes PA, Breci L, Francisco WA (2005) Analysis of secreted proteins from Aspergillus flavus. Proteomics 5:3153–3161

    Article  PubMed  CAS  Google Scholar 

  • Mehta A, Brasileiro ACM, Souza DSL, Romano E, Campos MA, Grossi-de-Sa MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL (2008) Plant-pathogen interactions: what is proteomics telling us? FEBS J 275:3731–3746

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498

    Article  CAS  Google Scholar 

  • Oide S, Krasnoff S, Gibson D, Turgeon BG (2007) Intracellular siderohores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353

    Article  PubMed  CAS  Google Scholar 

  • Paper JM, Scott-Craig JS, Cuomo CA, Walton JD (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 7:3171–3183

    Article  PubMed  CAS  Google Scholar 

  • Phalip V, Delande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, Dupree P, Van Dorsselaer A, Jetsch J-M (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48:366–379

    Article  PubMed  CAS  Google Scholar 

  • Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159–169

    Article  PubMed  CAS  Google Scholar 

  • Pritsch C, Vance CP, Bushnell WR, Somers DA, Hohn TM, Muehlbauer GJ (2001) Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection. Physiol Mol Plant Pathol 58:1–12

    Article  CAS  Google Scholar 

  • Robertson D, Mitchell GP, Gilroy JS, Gerrish C, Bolwell GP, Slabas AR (1997) Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. J Biol Chem 272:15841–15848

    Article  PubMed  CAS  Google Scholar 

  • Seong KY, Zhao X, Xu JR, Guldener U, Kistler HC (2008) Conidial germination in the filamentous fungus Fusarium graminearum. Fungal Genet Biol 45:389–399

    Article  PubMed  CAS  Google Scholar 

  • Shim WB, Sagaram WS, Choi YE, So J, Wilkinson HH, Lee YW (2006) FSR1 is essential for virulence and female fertility of Fusarium verticillioides and F. graminearum. Mol Plant Microbe Interact 19:725–733

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Wariishi H (2005) Development of a sample preparation method for fungal proteomics. FEMS Microbiol Lett 247:17–22

    Article  PubMed  CAS  Google Scholar 

  • Shin K-H, Mostafa Kama AH, Cho K, Choi J-S, Jin Y, Paek N-C, Lee YW, Lee JK, Park JC, Kim H-T, Heo H-Y, Woo SH (2011) Defense proteins are induced in wheat spikes exposed to Fusarium graminearum. POJ 4:270–277

    CAS  Google Scholar 

  • Tan K-C, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS (2009) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol 10:703–715

    Article  PubMed  CAS  Google Scholar 

  • Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ (2008) Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 8:2256–2265

    Article  PubMed  CAS  Google Scholar 

  • Trail F (2009) For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol 149:103–110

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:2354–2357

    Article  Google Scholar 

  • Urban M, Mott E, Farley T, Hammond-Kosack K (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol Plant Pathol 4:347–359

    Article  PubMed  CAS  Google Scholar 

  • Van Sluys MA, Monteiro-Vitorello CB, Camargo LEA, Menck CFM, Da Silva ACR, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytol 40:169–189

    Article  Google Scholar 

  • Vogel J, Drapkin B, Oomen J, Beach D, Bloom K, Snyder M (2001) Phosphorylation of g-tubulin regulates microtubule organization in budding yeast. Dev Cell 1:621–631

    Article  PubMed  CAS  Google Scholar 

  • Walter S, Nicholson P, Doohan FM (2010) Action and reaction of host and pathogen during Fusarium head blight disease. New Phytol 185:54–66

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yang L, Xu H, Li Q, Ma Z, Chy C (2005) Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 5:4496–4503

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Jensen JD, Svensson B, Jørgensen HJL, Collinge DB, Finnie C (2010a) Analysis of early events in the interaction between Fusarium graminearum and the susceptible barley (Hordeum vulgare) cultivar Scarlett. Proteomics 10:3748–3755

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Jensen JD, Spliid NH, Svensson B, Jacobsen S, Jørgensen LN, Jørgensen HJL, Collinge DB, Finnie C (2010b) Investigation of the effect of nitrogen on severity of Fusarium head blight in barley. J Proteomics 73:743–752

    Article  PubMed  CAS  Google Scholar 

  • Yang F (2011a) Application of proteomics to investigate barley-Fusarium graminearum interaction. Ph.D. thesis, Enzyme and Protein Chemistry Department of Systems Biology, Technical University of Denmark, Lyngby

    Google Scholar 

  • Yang F, Jørgensen AD, Li H, Søndergaard I, Finnie C, Svensson B, Jiang D, Wollenweber B, Jacobsen S (2011b) Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics 11:1684–1695

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Jensen JD, Svensson B, JØrgensen HJL, Collinge DB, Finnee C (2012) Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat. Mol Plant Pathol 13:445–453

    Article  PubMed  CAS  Google Scholar 

  • Yu HY, Seo JA, Kim JE, Han KH, Shim WB, Yun SH, Lee YW (2008) Functional analyses of heterotrimeric G protein Ga and Gb subunits in Gibberella zeae. Microbiology 154:392–401

    Article  PubMed  CAS  Google Scholar 

  • Zhao X-M, Zhang X-W, Tang W-H, Chen L (2009) FPPI: Fusarium graminearum protein-protein interaction database. J Proteome Res 8:4714–4721

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Kolb FL, Riechers DE (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 48:770–780

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6:4599–4609

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa M. Alconada Magliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Magliano, T.M.A., Ortega, L.M., Astoreca, A.L., Pritsch, C. (2013). Proteomic Approaches to Analyze Wheat-Fusarium graminearum Interaction. In: Alconada Magliano, T., Chulze, S. (eds) Fusarium Head Blight in Latin America. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7091-1_8

Download citation

Publish with us

Policies and ethics