Skip to main content

Mathematics of D5 Network

  • Chapter
  • First Online:
Diamond and Related Nanostructures

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 6))

Abstract

Diamond D5 is the generic name proposed by Diudea for hyperdiamonds constructed mostly from pentagons and hexagons. There are known several allotropes of D5; within this chapter only the clathrate II structure (the basic diamond D5) and the spongy D5 structure are considered. A topological index is a single number representation of the topology of a given structure. Topological indices are calculated on the graphs associated to the chemical structure and were extensively used in QSAR/QSPR studies. The aim of this chapter is to apply some group theoretical algorithms to compute symmetry and topological indices of this important class of nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashrafi AR, Ghorbani M (2009) Mathematics of fullerenes. Part II: counting problems. University of Kashan Press, Kashan

    Google Scholar 

  • Ashrafi AR, Ghorbani M (2010) PI and omega polynomials of IPR fullerenes. Fuller Nanotub Carbon Nanostruct 18:198–206

    Article  CAS  Google Scholar 

  • Ashrafi AR, Loghman A (2006a) Padmakar-Ivan index of TUC4C8(S) nanotubes. J Comput Theor Nanosci 3:378–381

    CAS  Google Scholar 

  • Ashrafi AR, Loghman A (2006b) PI index of Zig-Zag polyhex nanotubes. MATCH Commun Math Comput Chem 55:447–452

    CAS  Google Scholar 

  • Ashrafi AR, Loghman A (2006c) PI index of armchair polyhex nanotubes. Ars Comb 80:193–199

    Google Scholar 

  • Ashrafi AR, Rezaei F (2007) PI index of polyhex nanotori. MATCH Commun Math Comput Chem 57:243–250

    Google Scholar 

  • Ashrafi AR, Jalali M, Ghorbani M, Diudea MV (2008) Computing PI and omega polynomials of an infinite family of fullerenes. MATCH Commun Math Comput Chem 60:905–916

    CAS  Google Scholar 

  • Ashrafi AR, Ghorbani M, Jalali M (2009a) Study of IPR fullerene by counting polynomials. J Theor Comput Chem 8:451–457

    Article  CAS  Google Scholar 

  • Ashrafi AR, Ghorbani M, Jalali M (2009b) Mathematics of fullerenes. Part I: topological indices. University of Kashan Press, Kashan

    Google Scholar 

  • Ashrafi AR, Ghorbani M, Jalali M (2010) The PI and edge Szeged polynomials of an infinite family of fullerenes. Fuller Nanotub Carbon Nanostruct 18:107–116

    Article  CAS  Google Scholar 

  • Ashrafi AR, Saheli M, Ghorbani M (2011) The eccentric connectivity index of nanotubes and nanotori. J Comput Appl Math 235:4561–4566

    Article  Google Scholar 

  • Bosma W, Cannon J, Playoust C (1997) The Magma algebra system. I. The user language. J Symb Comput 24:235–265

    Article  Google Scholar 

  • Darafsheh MR (2010) Computation of topological indices of some graphs. Acta Appl Math 110:1225–1235

    Article  Google Scholar 

  • Diudea MV (2010) Diamond D5, a novel allotrope of carbon. Studia Univ Babes-Bolyai Chemia 55:11–17

    CAS  Google Scholar 

  • Diudea MV, Nagy CL (2012) All pentagonal ring structures related to the C20 fullerene: diamond D5. Diamond. Relat Mater 23:105–108

    Article  CAS  Google Scholar 

  • Diudea MV, Ursu O, Nagy LCs (2002) TOPOCLUJ. Babes-Bolyai University, Cluj

    Google Scholar 

  • Diudea MV, Florescu MS, Khadikar PV (2006) Molecular topology and its applications. EFICON, Bucharest

    Google Scholar 

  • Diudea MV, Ilić A, Medeleanu M (2011a) Hyperdiamonds: a topological view. Iran J Math Chem 2:7–29

    Google Scholar 

  • Diudea MV, Nagy CL, Ilić A (2011b) Diamond D5, a novel class of carbon allotropes. In: Putz MV (ed) Carbon bonding and structures. Advances in physics and chemistry, vol 5. Springer, Berlin, pp 273–289

    Chapter  Google Scholar 

  • Diudea MV, Nagy CL, Bende A (2012) On diamond D5. Struct Chem 23:981–986

    Article  CAS  Google Scholar 

  • Gupta G, Singh M, Madan AK (2002) Application of graph theory: relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity. J Math Anal Appl 266:259–268

    Article  Google Scholar 

  • Gutman I (1994) A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes New York 27:9–15

    Google Scholar 

  • Gutman I, Ashrafi AR (2008) On the PI index of phenylenes and their hexagonal squeezes. MATCH Commun Math Comput Chem 60:135–142

    CAS  Google Scholar 

  • Hosoya H (1988) On some counting polynomials in chemistry. Discret Appl Math 19:239–257

    Article  Google Scholar 

  • HyperChem package Release 7.5 for Windows (2002) Hypercube Inc., Florida, USA

    Google Scholar 

  • Khadikar PV (2000) On a novel structural descriptor PI. Nat Acad Sci Lett 23:113–118

    CAS  Google Scholar 

  • Khadikar PV, Kale PP, Deshpande NV, Karmarkar S, Agrawal VK (2001a) Novel PI indices of hexagonal chains. J Math Chem 29:143–150

    Article  CAS  Google Scholar 

  • Khadikar PV, Karmarkar S, Agrawal VK (2001b) A novel PI index and its applications to QSPR/QSAR studies. J Chem Inf Comput Sci 41:934–949

    Article  CAS  Google Scholar 

  • Khadikar PV, Karmarkar S, Varma RG (2002a) On the estimation of PI index of polyacenes. Acta Chim Slov 49:755–771

    CAS  Google Scholar 

  • Khadikar PV, Karmarkar S, Singh S, Shrivastava A (2002b) Use of the PI index in predicting toxicity of nitrobenzene derivatives. Bioorg Med Chem 10:3163–3170

    Article  CAS  Google Scholar 

  • Khadikar PV, Mandloi D, Bajaj AV, Joshi S (2003) QSAR study on solubility of alkanes in water and their partition coefficients in different solvent system using PI index. Bioorg Med Chem Lett 13:419–422

    Article  CAS  Google Scholar 

  • Khalifeh MH, Yousefi-Azari H, Ashrafi AR (2008) Vertex and edge PI indices of Cartesian product graphs. Discret Appl Math 156:1780–1789

    Article  Google Scholar 

  • Kyani A, Diudea MV (2012) Molecular dynamics simulation study of the diamond D5 substructures. Central Eur J Chem 10(4):1028–1033

    Article  Google Scholar 

  • Sabaghian-Bidgoli H, Ashrafi AR, Fathy M (2011) Study of IPR fullerenes by PI index. J Comput Theor Nanosci 8:1259–1263

    Article  CAS  Google Scholar 

  • Sardana S, Madan AK (2001) Application of graph theory: relationship of molecular connectivity index, Wiener’s index and eccentric connectivity index with diuretic activity. MATCH Commun Math Comput Chem 43:85–98

    CAS  Google Scholar 

  • Sharma V, Goswami R, Madan AK (1997) Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies. J Chem Inf Comput Sci 37:273–282

    Article  CAS  Google Scholar 

  • Szefler B, Diudea MV (2012) On molecular dynamics of the diamond D5 seeds. Struct Chem 23:717–722

    Article  CAS  Google Scholar 

  • The GAP Team (1995) GAP, groups, algorithms and programming. Lehrstuhl De für Mathematik, RWTH, Aachen

    Google Scholar 

  • Trinajstić N (1992) Chemical graph theory. CRC Press, Boca Raton

    Google Scholar 

  • Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69:17–20

    Article  CAS  Google Scholar 

  • Xu L, Deng H (2006) PI indices of tori Tp, q[C4;C8] covering C4 and C8. MATCH Commun Math Comput Chem 57:485–502

    Google Scholar 

  • Zhou B, Du Z (2010) On eccentric connectivity index. MATCH Commun Math Comput Chem 63:181–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ashrafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ashrafi, A.R., Koorepazan-Moftakhar, F., Diudea, M.V., Stefu, M. (2013). Mathematics of D5 Network. In: Diudea, M., Nagy, C. (eds) Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6371-5_18

Download citation

Publish with us

Policies and ethics