Skip to main content

Bivalve Sclerochronology

  • Reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Bivalve shell chronometer; Related to dendrochronology

Definition

Sclerochronology: The study of incremental growth patterns in hard part remains of organisms that grow by accretion (i.e., adding on discrete growth layers throughout the life of the organism). The term “sclerochronology” was introduced for the study of growth patterns in calcareous exoskeletons or shells and applied to study the rate and patterns of coral growth (Buddemeier et al., 1974). It is analogous to the earlier established approach of dendrochronology. The application of the term “sclerochronology” has since broadened to the hard parts of many other aquatic taxa (e.g., bivalves, limpets, fish, and coralline sponges).

Bivalve: Bivalves are in the class Bivalvia of the phylum Mollusca and include freshwater, marine, and estuarine clams, mussels, quahogs, scallops, and oysters. They have a wide biogeographic distribution, extending from the equator to the poles, and occur from shallow to deep water....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Andrus, C. F. T., 2011. Shell midden sclerochronology. Quaternary Science Reviews, 30(21–22), 2892–2905. http://dx.doi.org/10.1016/j.quascirev.2011.07.016.

    Article  Google Scholar 

  • Andrus, C. F. T., and Thompson, V. D., 2012. Determining the habitats of mollusk collection at the Sapelo Island shell ring complex, Georgia, USA using oxygen isotope sclerochronology. Journal of Archaeological Science, 39(2), 215–228. http://dx.doi.org/10.1016/j.jas.2011.08.002.

    Article  Google Scholar 

  • Ansell, A. D., 1968. The rate of growth of the hard clam Mercenaria mercenaria (L.) throughout the geographical range. Conseil Permanent International pour l'Exploration de la Mer, Journal du Conseil, 31(3), 364–409.

    Article  Google Scholar 

  • Arnold, W. S., Bert, T. M., Quitmyer, I. R., and Jones, D. S., 1998. Contemporaneous deposition of annual growth bands in Mercenaria mercenaria (Linnaeus), Mercenaria campechiensis (Gmelin), and their natural hybrid forms. Journal of Experimental Marine Biology and Ecology, 223, 93–109.

    Article  Google Scholar 

  • Bailey, G. N., Deith, M. R., and Shackleton, N. J., 1983. Oxygen isotope analysis and seasonality determinations: limits and potential of a new technique. American Antiquity, 48(2), 390–398.

    Article  Google Scholar 

  • Barker, R. M., 1964. Microtextural variation in pelecypod shells. Malacologia, 2, 69–86.

    Google Scholar 

  • Beukema, J. J., Knol, E., and Cadee, G. C., 1985. Effects of temperature on the length of the annual growing season in the tellinid bivalve Macoma balthica (L.) living on tidal flats in the Dutch Wadden Sea. Journal of Experimental Marine Biology and Ecology, 90, 129–144.

    Article  Google Scholar 

  • Brey, T., and Mackensen, A., 1997. Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually. Polar Biology, 17, 465–468.

    Article  Google Scholar 

  • Brockington, S., and Clarke, A., 2001. The relative influence of temperature and food on the metabolism of a marine invertebrate. Journal of Experimental Marine Biology and Ecology, 258(1), 87–99. http://dx.doi.org/10.1016/S0022-0981(00)00347-6.

    Article  Google Scholar 

  • Brown, J. R., 1988. Multivariate analyses of the role of environmental factors in seasonal and site-related growth variation in the Pacific oyster, Crassostrea gigas. Marine Ecology: Progress Series, 45, 225–236.

    Article  Google Scholar 

  • Buddemeier, R. W., Maragos, J. E., and Knutson, D. W., 1974. Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. Journal of Experimental Marine Biology and Ecology, 14(2), 179–199. http://dx.doi.org/10.1016/0022-0981(74)90024-0.

    Article  Google Scholar 

  • Burchell, M., Cannon, A., Hallmann, N., Schwarcz, H. P., and Schöne, B. R., 2013a. Inter-site variability in the season of shellfish collection on the Central Coast of British Columbia. Journal of Archaeological Science, 40, 626–636.

    Article  Google Scholar 

  • Burchell, M., Hallmann, N., Martindale, A., Cannon, A., and Schöne, B. R., 2013b. Seasonality and intensity of shellfish harvesting in the north coast of British Columbia. Journal of Coastal and Island Archaeology, 8, 152–169.

    Article  Google Scholar 

  • Burchell, M., Cannon, A., Hallmann, N., Schwarcz, H. P., and Schöne, B. R., 2013a. Inter-site variability in the season of shellfish collection on the Central Coast of British Columbia. Journal of Archaeological Science, 40, 626–636.

    Article  Google Scholar 

  • Burchell, M., Hallmann, N., Martindale, A., Cannon, A., and Schöne, B. R., 2013b. Seasonality and intensity of shellfish harvesting in the north coast of British Columbia. Journal of Coastal and Island Archaeology, 8, 152–169.

    Article  Google Scholar 

  • Butler, P. G., Richardson, C. A., Scourse, J. D., Wanamaker, A. D., Jr., Shammon, T. M., and Bennell, J. D., 2010. Marine climate in the Irish Sea: analysis of a 489-year marine master chronology derived from growth increments in the shell of the clam Arctica islandica. Quaternary Science Reviews, 29(13–14), 1614–1632. http://dx.doi.org/10.1016/j.quascirev.2009.07.010.

  • Butler, P. G., Wanamaker, A. D., Jr., Scourse, J. D., Richardson, C. A., and Reynolds, D. J., 2011. Long-term stability of δ13C with respect to biological age in the aragonite shell of mature specimens of the bivalve mollusk Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology, 302(1–2), 21–30. http://dx.doi.org/10.1016/j.palaeo.2010.03.038.

    Article  Google Scholar 

  • Butler, P. G., Wanamaker, A. D., Jr., Scourse, J. D., Richardson, C. A., and Reynolds, D. J., 2013. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 141–151.

    Article  Google Scholar 

  • Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos, S., Kalin, R. M., Ortlieb, L., and Fontugne, M., 2005. Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: potential application to Peruvian paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(1–2), 4–25. http://dx.doi.org/10.1016/j.palaeo.2005.03.045.

    Article  Google Scholar 

  • Carré, M., Klaric, L., Lavallée, D., Julien, M., Bentaleb, I., Fontugne, M., and Kawka, O., 2009. Insights into early Holocene hunter-gatherer mobility on the Peruvian Southern Coast from mollusk gathering seasonality. Journal of Archaeological Science, 36(5), 1173–1178. http://dx.doi.org/10.1016/j.jas.2009.01.005.

    Article  Google Scholar 

  • Carroll, M. L., Johnson, B. J., Henkes, G. A., McMahon, K. W., Voronkov, A., Ambrose, W. G., Jr., and Denisenko, S. G., 2009. Bivalves as indicators of environmental variation and potential anthropogenic impacts in the southern Barents Sea. Marine Pollution Bulletin, 59, 193–206, doi:10.1016/j.marpolbul.2009.02.022.

    Article  Google Scholar 

  • Cerrato, R. M., Wallace, H. V. E., and Lightfoot, K. G., 1991. Tidal and seasonal patterns in the chondrophore of the soft-shell clam Mya arenaria. Biological Bulletin, 181(2), 307–311, doi:10.2307/1542102.

    Article  Google Scholar 

  • Chauvaud, L., Lorrain, A., Dunbar, R. B., Paulet, Y.-M., Thouzeau, G., Jean, F., Guarini, J.-M., and Mucciarone, D., 2005. Shell of the great scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochemistry Geophysics Geosystems, 6(8), doi:10.1029/2004GC000890.

    Google Scholar 

  • Clark, G. R., II, 1974. Growth lines in invertebrate skeletons. Annual Review of Earth and Planetary Sciences, 2, 77–99.

    Article  Google Scholar 

  • Clark, G. R. I., 1975. Periodic growth and biological rhythms in experimentally grown bivalves. In Rosenberg, G. D., and Runcom, S. K. (eds.), Growth Rhythms and the History of the Earth’s Rotation. London: Wiley, pp. 103–117.

    Google Scholar 

  • Clark, G. R. I., 1980. Study of molluscan shell structure and growth lines using thin sections. In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. New York/London: Plenum Press, pp. 603–606.

    Google Scholar 

  • Crenshaw, M. A., 1980. Mechanisms of shell formation and dissolution. In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. New York/London: Plenum Press, pp. 115–132.

    Chapter  Google Scholar 

  • Dettman, D. L., and Lohmann, K. C., 1995. Microsampling carbonates for stable isotope and minor element analysis: physical separation of samples on a 20 micrometer scale. Journal of Sedimentary Research, A65(3), 566–569.

    Article  Google Scholar 

  • Dettman, D. L., Reische, A. K., and Lohmann, K. C., 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta, 63(7/8), 1049–1057.

    Article  Google Scholar 

  • Dettman, D. L., Flessa, K. W., Roopnarine, P. D., Schone, B. R., and Goodwin, D. H., 2004. The use of oxygen isotope variation in shells of estuarine mollusks as a quantitative record of seasonal and annual Colorado river discharge. Geochimica et Cosmochimica Acta, 68(6), 1253–1263.

    Article  Google Scholar 

  • Dunca, E., Schöne, B., and Mutvei, H., 2005. Freshwater bivalves tell of past climates: but how clearly do shells from polluted rivers speak. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 43–45, doi:10.1016/j.palaeo.2005.03.050.

    Article  Google Scholar 

  • Elliot, M., deMenocal, P. B., Linsley, B. K., Howe, S. S., Guilderson, T., and Quitmyer, I. R. (2002). Late Holocene environmental and hydrologic conditions in northwestern Florida derived from seasonally resolved profiles of δ18O and Sr/Ca of fossil bivalves. EOS Transactions, American Geophysical Union. San Francisco, CA: American Geophysical Union.

    Google Scholar 

  • Elliot, M., deMenocal, P. B., Linsley, B. K., and Howe, S. S., 2003. Environmental controls on the stable isotopic composition of Mercenaria mercenaria: potential application to paleoenvironmental studies. Geochemistry, Geophysics, Geosystems, 4(7), 1–16.

    Article  Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C., 1953. Revised carbonate water isotopic temperature scale. Geological Society of America Bulletin, 2, 417–425.

    Google Scholar 

  • Evans, J. W., 1972. Tidal growth increments in the cockle Clinocardium nuttalli. Science, 176(4033), 416–417, doi:10.2307/1734401.

    Article  Google Scholar 

  • Fritz, K. W., 1991. Seasonal condition change, morphometrics, growth and sex ratio of the ocean quahog, Arctica islandica (Linneaus, 1767) off New Jersey, USA. Journal of Shellfish Research, 10, 79–88.

    Google Scholar 

  • García-March, J. R., Surge, D., Lees, J. M., and Kersting, D. K., 2011. Ecological information and water mass properties in the Mediterranean recorded by stable isotope ratios in Pinna nobilis shells. Journal of Geophysical Research: Biogeosciences, 116(G2), G02009, doi:10.1029/2010jg001461.

    Article  Google Scholar 

  • Gillikin, D. P., Lorrain, A., Meng, L., and Dehairs, F., 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta, 71(12), 2936–2946. http://dx.doi.org/10.1016/j.gca.2007.04.003.

    Article  Google Scholar 

  • Goodwin, D. H., Flessa, K. W., Schöne, B. R., and Dettman, D. L., 2001. Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: implications for paleoenvironmental analysis. Palaios, 16, 387–398.

    Article  Google Scholar 

  • Goodwin, D. H., Cohen, A. N., and Roopnarine, P. D., 2010. Forensics on the half shell: a sclerochronological investigation of a modern biological invasion in San Francisco Bay, United States. Palaios, 25(11), 742–753, doi:10.2110/palo.2010.p10-015r.

    Article  Google Scholar 

  • Grossman, E. L., and Ku, T., 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59, 59–74.

    Article  Google Scholar 

  • Gutiérrez-Zugasti, I., 2011. Coastal resource intensification across the Pleistocene–Holocene transition in Northern Spain: evidence from shell size and age distributions of marine gastropods. Quaternary International, 244(1), 54–66. http://dx.doi.org/10.1016/j.quaint.2011.04.040.

    Article  Google Scholar 

  • Hall, C. A., Jr., Dollase, W. A., and Corbató, C. E., 1974. Shell growth in Tivela stultorum (Mawe, 1823) and Callista chione (Linnaeus, 1758) (Bivalvia): annual periodicity, latitudinal differences, and diminution with age. Palaeogeography, Palaeoclimatology, Palaeoecology, 15(1), 33–61. http://dx.doi.org/10.1016/0031-0182(74)90036-4.

    Article  Google Scholar 

  • Hallmann, N., Schöne, B. R., Strom, A., and Fiebig, J., 2008. An intractable climate archive – sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 269, 115–126.

    Article  Google Scholar 

  • Hallmann, N., Burchell, M., Schöne, B. R., Irvine, G. V., and Maxwell, D., 2009. High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science, 36(10), 2353–2364. http://dx.doi.org/10.1016/j.jas.2009.06.018.

    Article  Google Scholar 

  • Harding, J. M., Spero, H. J., Mann, R., Herbert, G. S., and Sliko, J. L., 2010. Reconstructing early 17th century estuarine drought conditions from Jamestown oysters. Proceedings of the National Academy of Sciences of the United States of America, 107, 10549–10554, doi:10.1073/pnas.1001052107.

    Article  Google Scholar 

  • Haveles, A. W., and Ivany, L. C., 2010. Rapid growth explains large size of mollusks in the Eocene Gosport Sand, United States Gulf Coast. Palaios, 25(9), 550–564, doi:10.2110/palo.2009.p09-148r.

    Article  Google Scholar 

  • Henry, K. M., and Cerrato, R. M., 2007. The annual macroscopic growth pattern of the northern quahog [=hard clam, Mercenaria mercenaria (L.)], in Narragansett Bay, Rhode Island. Journal of Shellfish Research, 26(4), 985–993, doi:10.2983/0730-8000(2007)26[985:tamgpo]2.0.co;2.

    Article  Google Scholar 

  • House, M. R., and Farrow, G. E., 1968. Daily growth banding in the shell of the cockle, Cardium edule. Nature, 219(5161), 1384–1386.

    Article  Google Scholar 

  • Ingram, B. L., Conrad, M. E., and Ingle, J. C., 1996. Stable isotope and salinity systematics in estuarine waters and carbonates: San Francisco Bay. Geochimica et Cosmochimica Acta, 60(3), 455–467.

    Article  Google Scholar 

  • Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., and Moody, R. M., 2008. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Bulletin of the Geological Society of America, 120, 659–678.

    Article  Google Scholar 

  • Jones, D. S., 1980. Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. Paleobiology, 6(3), 331–340, doi:10.2307/2400349.

    Google Scholar 

  • Jones, D. S., 1983. Sclerochronology: reading the record of the molluscan shell. American Scientist, 71, 384–391.

    Google Scholar 

  • Jones, D. S., and Quitmyer, I. R., 1996. Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios, 11(4), 340–346.

    Article  Google Scholar 

  • Jones, D. S., Arthur, M. A., and Allard, D. J., 1989. Sclerochronological records of temperature and growth from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Marine Biology, 102, 225–234.

    Article  Google Scholar 

  • Jones, D. S., Quitmyer, I. R., Arnold, W. S., and Marelli, D. C., 1990. Annual shell banding, age, and growth rate of hard clams (Mercenaria spp.) from Florida. Journal of Shellfish Research, 9, 215–225.

    Google Scholar 

  • Kennish, M. J., Lutz, R. A., and Rhoads, D. C., 1980. Preparation of acetate peels and fractured sections for observation of growth patterns within the bivalve shell. In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. New York/London: Plenum Press, pp. 597–601.

    Google Scholar 

  • Kirby, M. X., Soniat, T. M., and Spero, H. J., 1998. Stable isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica). Palaios, 13(6), 560–569.

    Article  Google Scholar 

  • Kraeuter, J. N., and Castagna, M. (eds.), 2001. Biology of the Hard Clam. Developments in Aquaculture and Fisheries Science. New York: Elsevier.

    Google Scholar 

  • Lohmann, G., and Schöne, B. R., 2013. Climate signatures on decadal to interdecadal time scales as obtained from mollusk shells (Arctica islandica) from Iceland. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 152–162. http://dx.doi.org/10.1016/j.palaeo.2012.08.006.

    Article  Google Scholar 

  • Lutz, R. A., and Rhoads, D. C., 1977. Anaerobiosis and a theory of growth line formation. Science, 198, 1222–1227.

    Article  Google Scholar 

  • Lutz, R. A., and Rhoads, D. C., 1980. Growth patterns within the molluscan shell: an overview. In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. New York/London: Plenum Press, pp. 203–254.

    Chapter  Google Scholar 

  • Marchitto, T. A., Jones, G. A., Goodfriend, G. A., and Weidman, C. R., 2000. Precise temporal correlation of Holocene mollusk shells using sclerochronology. Quaternary Research, 53, 236–246.

    Article  Google Scholar 

  • McConnaughey, T., and Gillikin, D., 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters, 28(5–6), 287–299, doi:10.1007/s00367-008-0116-4.

    Article  Google Scholar 

  • Milner, N., 2001. At the cutting edge: using thin sectioning to determine season of death of the European oyster, Ostrea edulis. Journal of Archaeological Science, 2001(28), 861–873.

    Article  Google Scholar 

  • Milner, N., Barrett, J., and Welsh, J., 2007. Marine resource intensification in Viking Age Europe: the molluscan evidence from Quoygrew, Orkney. Journal of Archaeological Science, 34(9), 1461–1472. http://dx.doi.org/10.1016/j.jas.2006.11.004.

    Article  Google Scholar 

  • Miyaji, T., Tanabe, K., and Schöne, B. R., 2007. Environmental controls on daily shell growth of Phacosoma japonicum (Bivalvia: Veneridae) from Japan. Marine Ecology: Progress Series, 336, 141–150, doi:10.3354/meps336141.

    Article  Google Scholar 

  • Mook, W. G., and Vogel, J. C., 1968. Isotopic equilibrium between shells and their environment. Science, 159, 874–875.

    Article  Google Scholar 

  • Mutvei, H., and Westermark, T., 2001. How environmental information can be obtained from Naiad shells. In Bauer, G., and Wächtler, K. (eds.), Ecology and Evolution of the Freshwater Mussels Unionoidea. Berlin/Heidelberg: Springer. Ecological Studies, Vol. 145, pp. 367–379.

    Chapter  Google Scholar 

  • Noakes, D. J., and Campbell, A., 1992. Use of geoduck clams to indicate changes in the marine environment of Ladysmith Harbor, British Columbia. Environmetrics, 3, 81–97.

    Article  Google Scholar 

  • Ohno, T., 1989. Palaeotidal characteristics determined by microgrowth patterns in bivalves. Palaeontology, 32, 237–263.

    Google Scholar 

  • Owen, R., Kennedy, H., and Richardson, C., 2002. Isotopic partitioning between scallop shell calcite and seawater: effect of shell growth rate. Geochimica et Cosmochimica Acta, 66(10), 1727–1737.

    Article  Google Scholar 

  • Owen, E. F., Wanamaker, A. D., Jr., Feindel, S. C., Schöne, B. R., and Rawson, P. D., 2008. Stable carbon and oxygen isotope fractionation in bivalve (Placopecten magellanicus) larval aragonite. Geochimica et Cosmochimica Acta, 72(19), 4687–4698. http://dx.doi.org/10.1016/j.gca.2008.06.029.

    Article  Google Scholar 

  • Pannella, G., and MacClintock, C., 1968. Biological and environmental rhythms reflected in Molluscan shell growth. Memoir (The Paleontological Society), 2, 64–80.

    Google Scholar 

  • Parsons, G. J., Robinson, S. M. C., Roff, J. C., and Dadswell, M. J., 1993. Daily growth rates as indicated by valve ridges in postlarval giant scallop (Placopecten magellanicus) (Bivalvia: Pectinidae). Canadian Journal of Fisheries and Aquatic Sciences, 50(3), 456–464, doi:10.1139/f93-053.

    Article  Google Scholar 

  • Peterson, C. H., Duncan, P. B., Summerson, H. C., and Safrit, J. G. W., 1983. A mark-recapture test of annual periodicity of internal growth band deposition in shells of hard clams, Mercenaria mercenaria, from a population along the southeastern United States. Fishery Bulletin, 81, 765–779.

    Google Scholar 

  • Quitmyer, I. R., 2013. Precolumbian site seasonality and harvest of estuarine resources at the Pineland Site Complex, Charlotte Harbor, Florida. In Marquardt, W. H., Walker, K. J., Marquardt, W. H., and Walker, K. J. (eds.), The Archaeology of Pineland: A Coastal Southwest Florida Site Complex, A.D. 50–1700. Gainesville: University of Florida. Institute of Archaeology and Paleoenvironmental Studies, Monograph, Vol. 4, pp. 349–372.

    Google Scholar 

  • Quitmyer, I. R., and Jones, D. S., 1992. Calendars of the coast: seasonal growth increment patterns in shells of modern and archaeological southern quahogs, Mercenaria campechiensis, from Charlotte Harbor, Florida. In Marquardt, W. H., and Marquardt, W. H. (eds.), Culture and Environment in the Domain of the Calusa. Gainesville: Institute of Archaeological Studies, University of Florida. Institute of Archaeology and Paleoenvironmental Studies, Monograph, Vol. 1, pp. 247–264.

    Google Scholar 

  • Quitmyer, I. R., and Jones, D. S., 2012. Annual incremental shell growth patterns in hard clams (Mercenaria spp) from St. Catherines Island, Georgia: a record of seasonal and anthropogenic impact on zooarchaeological resources. In Reitz, E. J., Quitmyer, I. R., and Thomas, D. H. (eds.), Seasonality and Human Mobility along the Georgia Bight. New York: Anthropological Papers of the American Museum of Natural History, pp. 135–148.

    Google Scholar 

  • Quitmyer, I. R., Jones, D. S., and Arnold, W. S., 1997. The sclerochronology of hard clams, Mercenaria spp., from the South-Eastern U.S.A.: a method of elucidating the zooarchaeological records of seasonal resource procurement and seasonality in prehistoric shell middens. Journal of Archaeological Science, 24, 825–840.

    Article  Google Scholar 

  • Richardson, C. A., 1987. Tidal bands in the shell of the clam Tapes philippinarum (Adams and Reeve, 1850). Proceedings of the Royal Society of London B, 230, 367–387.

    Article  Google Scholar 

  • Reitz, E. J., Quitmyer, I. R., and Thomas, D. H., (eds.), 2012. Seasonality and Human Mobility along the Georgia Bight. Anthropological Papers of the American Museum of Natural History, Number 97. New York: American Museum of Natural History, 236pp.

    Google Scholar 

  • Sadler, J., Carré, M., Azzoug, M., Schauer, A. J., Ledesma, J., Cardenas, F., Chase, B. M., Bentaleb, I., Muller, S. D., Mandeng, M., Rohling, E. J., and Sachs, J. P., 2012. Reconstructing past upwelling intensity and the seasonal dynamics of primary productivity along the Peruvian coastline from mollusk shell stable isotopes. Geochemistry, Geophysics, Geosystems, 13(1), Q01015, doi:10.1029/2011gc003595.

    Article  Google Scholar 

  • Schöne, B. R., and Fiebig, J., 2009. Seasonality in the North Sea during the Allerød and late Medieval Climate Optimum using bivalve sclerochronology. International Journal of Earth Sciences, 98, 83–98, doi:10.1007/s00531-008-0363-7.

    Article  Google Scholar 

  • Schöne, B. R., and Gillikin, D. P., 2013. Unraveling environmental histories from skeletal diaries – advances in sclerochronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 1–5. http://dx.doi.org/10.1016/j.palaeo.2012.11.026.

    Article  Google Scholar 

  • Schöne, B. R., and Surge, D., 2012. Chapter 14, Bivalve sclerochronology and geochemistry. Part N, Bivalvia, revised, volume 1. Treatise Online, 46, 1–24. Seldon, P., Hardesty, J., and Carter, J. G., (coordinator). Lawrence, KS: University of Kansas, Paleontological Institute.

    Google Scholar 

  • Schöne, B. R., Goodwin, D. H., Flessa, K. W., Dettman, D. L., and Roopnarine, P. D., 2002. Sclerochronology and growth of the bivalve mollusks Chione (Chionista) fluctifraga and C. (Chionista) cortezi in the northern Gulf of California, Mexico. The Veliger, 45(1), 45–54.

    Google Scholar 

  • Schöne, B. R., Oschmann, W., Rössler, J., Castro, A. D. F., Houk, S. D., Kröncke, I., Dreyer, W., Janssen, R., Rumohr, H., and Dunca, E., 2003a. North Atlantic Oscillation dynamics recorded in shells of a long-lived bivalve mollusk. Geology, 31(12), 1037–1040, doi:10.1130/g20013.1.

    Article  Google Scholar 

  • Schöne, B. R., Tanabe, K., Dettman, D. L., and Sato, S., 2003b. Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Marine Biology, 142, 473–485.

    Google Scholar 

  • Schöne, B. R., Oschmann, W., Tanabe, K., Dettman, D., Fiebig, J., Houk, S. D. S. D., and Kanie, Y., 2004. Holocene seasonal environmental trends at Tokyo Bay, Japan, reconstructed from bivalve mollusk shells–implications for changes in the East Asian monsoon and latitudinal shifts of the Polar Front. Quaternary Science Reviews, 23(9–10), 1137–1150.

    Article  Google Scholar 

  • Schöne, B. R., Dunca, E., Fiebig, J., and Pfeiffer, M., 2005a. Mutvei’s solution: an ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(1–2), 149–166.

    Article  Google Scholar 

  • Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J., Johnson, A. L. A., Dreyer, W., and Oschmann, W., 2005b. Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology, 228(1–2), 130–148.

    Article  Google Scholar 

  • Schöne, B. R., Houk, S. D., Freyre Castro, A. D., Fiebig, J., Oschmann, W., Kröncke, I., Dreyer, W., and Gosselck, F., 2005c. Daily growth rates in shells of Arctica islandica: assessing sub-seasonal environmental controls on a long-lived bivalve mollusk. Palaios, 20(1), 78–92, doi:10.2110/palo.2003.p03-101.

    Article  Google Scholar 

  • Schöne, B. R., Wanamaker, A. D., Jr., Fiebig, J., Thébault, J., and Kreutz, K., 2011. Annually resolved δ13Cshell chronologies of long-lived bivalve mollusks (Arctica islandica) reveal oceanic carbon dynamics in the temperate North Atlantic during recent centuries. Palaeogeography, Palaeoclimatology, Palaeoecology, 302(1–2), 31–42. http://dx.doi.org/10.1016/j.palaeo.2010.02.002.

    Article  Google Scholar 

  • Shaul, W., and Goodwin, L., 1982. Geoduck (Panope generosa: Bivalvia) age as determined by internal growth lines in the shell. Canadian Journal of Fisheries and Aquatic Sciences, 39, 632–636.

    Article  Google Scholar 

  • Strom, A., Francis, R. C., Mantua, N. J., Miles, E. L., and Peterson, D. L., 2004. North Pacific climate recorded in growth rings of geoduck clams: a new tool for paleoenvironmental reconstruction. Geophysical Research Letters, 31(6), L06206, doi:10.1029/2004gl019440.

    Article  Google Scholar 

  • Strom, A., Francis, R. C., Mantua, N. J., Miles, E. L., and Peterson, D. L., 2005. Preserving low-frequency climate signals in growth records of geoduck clams (Panopea abrupta). Palaeogeography, Palaeoclimatology, Palaeoecology, 228(1–2), 167–178. http://dx.doi.org/10.1016/j.palaeo.2005.03.048.

    Article  Google Scholar 

  • Surge, D. M., Lohmann, K. C., and Dettman, D. L., 2001. Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 283–296.

    Article  Google Scholar 

  • Surge, D., Wang, T., Gutiérrez-Zugasti, I., and Kelley, P. H., 2013. Isotope sclerochronology and season of annual growth line formation in limpet shells (Patella vulgata) from warm- and cold-temperate zones in the eastern North Atlantic. Palaios, 28(6), 386–393, doi:10.2110/palo.2012.p12-038r.

    Article  Google Scholar 

  • Tanabe, K., and Oba, T., 1988. Latitudinal variation in shell growth patterns of Phacosoma japonicum (Bivalvia: Veneridae) from the Japanese coast. Marine Ecology: Progress Series, 47, 75–82.

    Article  Google Scholar 

  • Tevez, M. J. S., and Carter, J. G., 1980. Chapter 4, Study of annual growth bands in Unionacean bivalves. In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. New York/London: Plenum Press, pp. 613–614.

    Google Scholar 

  • Thompson, I., Jones, D. S., and Dreibelbis, D., 1980. Annual internal growth banding and life history of the ocean quahog Arctica islandica (Mollusca: Bivalvia). Marine Biology, 57(1), 25–34, doi:10.1007/bf00420964.

    Article  Google Scholar 

  • Thórarinsdóttir, G. G., 2000. Annual gametogenic cycle in ocean quahog, Arctica islandica from north-western Iceland. Journal of the Marine Biological Association of the United Kingdom, 80, 661–666.

    Article  Google Scholar 

  • Urey, H. C., 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562–581, doi:10.1039/jr9470000562.

    Google Scholar 

  • Wanamaker, A. D., Kreutz, K. J., Borns, H. W., Introne, D. S., Feindel, S., and Barber, B. J., 2006. An aquaculture-based method for calibrated bivalve isotope paleothermometry. Geochemistry, Geophysics, Geosystems, 7(9), Q09011, doi:10.1029/2005gc001189.

    Article  Google Scholar 

  • Wanamaker, A. D., Jr., Heinemeier, J., Scourse, J. D., Richardson, C. A., Butler, P. G., Eiríksson, J., and Knudsen, K. L., 2008. Very long-lived mollusks confirm 17th Century AD tephra-based radiocarbon reservoir ages for North Icelandic shelf waters. Radiocarbon, 50(3), 399–412.

    Google Scholar 

  • Wanamaker, A. D., Jr., Kreutz, K. J., Schöne, B. R., and Introne, D. S., 2011. Gulf of Main shells reveal changes in seawater temperature seasonality during the Medieval Climate Anomaly and the Little Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 43–51, doi:10.1016/j.palaeo.2010.06.005.

    Article  Google Scholar 

  • Wang, T., Surge, D., and Walker, K. J., (2011). Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths. Quaternary International. 308–309, 230–241. http://dx.doi.org/10.1016/j.quaint.2012.11.013.

  • Watanabe, T., and Oba, T., 1999. Daily reconstruction of water temperature from oxygen isotopic ratios of a modern Tridacna shell using a freezing microtome sampling technique. Journal of Geophysical Research: Oceans, 104(C9), 20667–20674, doi:10.1029/1999jc900097.

    Article  Google Scholar 

  • Wefer, G., and Berger, W. H., 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100, 207–248.

    Article  Google Scholar 

  • Weidman, C. R., Jones, G. A., and Lohmann, K. C., 1994. The long-lived mollusc Arctica islandica: a new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the northern North Atlantic Ocean. Journal of Geophysical Research: Oceans, 99, 18305–18314.

    Article  Google Scholar 

  • Wisshak, M., López Correa, M., Gofas, S., Salas, C., Taviani, M., Jakobsen, J., and Freiwald, A., 2009. Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic. Deep Sea Research, Part I: Oceanographic Research Papers, 56(3), 374–407. http://dx.doi.org/10.1016/j.dsr.2008.10.002.

    Article  Google Scholar 

  • Witbaard, R., Jenness, M. I., van der Borg, K., and Ganssen, G., 1994. Verification of annual growth increments in Arctica islandica L. from the North Sea by means of oxygen and carbon isotopes. Netherlands Journal of Sea Research, 33, 91–101.

    Article  Google Scholar 

  • Yan, L., Schöne, B. R., and Arkhipkin, A., 2012. Eurhomalea exalbida (Bivalvia): a faithful recorder of climate in southern South America? Palaeogeography, Palaeoclimatology, Palaeoecology, 250–252, 91–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna M. Surge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Surge, D.M., Schöne, B.R. (2015). Bivalve Sclerochronology. In: Jack Rink, W., Thompson, J.W. (eds) Encyclopedia of Scientific Dating Methods. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6304-3_165

Download citation

Publish with us

Policies and ethics