Skip to main content

Coastal Bio-geochemical Cycles

  • Reference work entry
  • First Online:
Encyclopedia of Marine Geosciences

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The “Coastal Biogeochemical Cycles” is dealing with the transformation of chemical speciation of elements (i.e., chemical form and valence) and flow (e.g., flux) of materials between biotic and abiotic compartments of coastal and marine environments (here after the coastal ocean) that is defined by landmass (e.g., continents) on one side and the open ocean on another side. The study of biogeochemical cycles in this domain needs an approach that provides an integrated view of the physical, biological, geological, and chemical aspects of materials in the changing marine environment.

Introduction

Our understanding of the ocean was built up along with the ambition of navigation and exploration of marine resources by human beings that started more than 2000 years ago. The coastal ocean, because of its proximity to the land, is the marine environment that has been extensively explored by our human societies. For instance, about 1,500 years ago, our ancestors from Asia started to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arrigo, K. R., van Dijken, G., and Pabi, S., 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters, 35, L19603, doi:10.1029/2008GL035028.

    Article  Google Scholar 

  • Azam, F., and Malfatti, F., 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5, 782–791.

    Article  Google Scholar 

  • Bange, H. W., Naqvi, S. W. A., and Codispoti, L. A., 2005. The nitrogen cycle in the Arabian Sea. Progress in Oceanography, 65, 145–158.

    Article  Google Scholar 

  • Bauer, J. E., and Bianchi, T. S., 2011. Dissolved organic carbon cycling and transformation. In Wolanski, E., and McLusky, D. S. (eds.), Treatise on Estuarine and Coastal Science. Waltham: Academic Press, Vol. 5, pp. 7–67.

    Chapter  Google Scholar 

  • Bauer, J. E., and Druffel, E. R. M., 1998. Ocean margins as a significant source of organic matter to the deep open ocean. Nature, 392, 482–485.

    Article  Google Scholar 

  • Boesch, D. F., 2002. Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries, 25, 886–900.

    Article  Google Scholar 

  • Bruland, K. W., Rue, E. L., Smith, G. J., and Ditullio, G. R., 2005. Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Marine Chemistry, 93, 81–103.

    Article  Google Scholar 

  • Chen, C. T. A., Liu, K. K., and Macdonald, R., 2003. Continental margin exchanges. In Fasham, M. J. R. (ed.), Ocean Biogeochemistry. Berlin: Springer, pp. 53–97.

    Chapter  Google Scholar 

  • Dugdale, R. C., and Goering, J. J., 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196–206.

    Article  Google Scholar 

  • Fasham, M. J. R., Balino, B. M., and Bowles, M. C., 2001. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). AMBIO Special Report, 10, 4–31.

    Google Scholar 

  • GEOHAB, 2001. Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. Baltimore and Paris: SCOR and IOC, 87 pp.

    Google Scholar 

  • GEOTRACES, 2006. GEOTRACES Science Plan. Baltimore, MD: Scientific Committee on Oceanic Research (SCOR). 79 pp.

    Google Scholar 

  • GLOBEC, 1997. Global Ocean Ecosystem Dynamics Science Plan. IGBP Report No. 40. Stockholm: IGBP Secretariat, 83 pp.

    Google Scholar 

  • Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E., 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–1742.

    Article  Google Scholar 

  • Hopkinson, C. S., and Vallino, J. J., 2005. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature, 433, 142–145.

    Article  Google Scholar 

  • IMBER, 2005. IMBER Science Plan and Implementation Strategy. IGBP Report No. 52. Stockholm: IGBP Secretariat, 76 pp.

    Google Scholar 

  • IMBER, 2010. Supplement to the IMBER Science Plan and Implementation Strategy. IGBP report no. 52A. Stockholm: IGBP Secretariat, 36 pp.

    Google Scholar 

  • LOICZ, 2005. LOICZ Science Plan and Implementation Strategy. IGBP report 51/IHDP report no. 18. Stockholm: IGBP Secretariat, 60 pp.

    Google Scholar 

  • Morel, F. M. M., Milligan, A. J., and Saito, M. A., 2003. Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In Elderfield, H. (ed.), The Oceans and Marine Geochemistry, Treatise on Geochemistry. Oxford: Elsevier, pp. 113–143.

    Chapter  Google Scholar 

  • Naqvi, S. W. A., Bange, H. W., Farias, L., Monterio, P. M. S., Scranton, M. I., and Zhang, J., 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences, 7, 2159–2190.

    Article  Google Scholar 

  • Redfield, A. C., Ketchum, B. H., and Richards, F. A., 1963. The influence of organisms on the composition of sea-water. In Hill, M. N. (ed.), The Sea. New York: Interscience, pp. 26–77.

    Google Scholar 

  • Samiento, J. L., and Gruber, N., 2006. Ocean Biogeochemical Dynamics. Princeton: Princeton University Press.

    Google Scholar 

  • Syvitski, J. P. M., Vorosmarty, C., Kettner, A. J., and Green, P., 2005. Impacts of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–380.

    Article  Google Scholar 

  • Thomas, H., Bozec, Y., Elkalay, K., and de Baar, H. J. W., 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304, 1005–1008.

    Article  Google Scholar 

  • Zhang, J., Liu, S. M., Ren, J. L., Wu, Y., and Zhang, G. L., 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea. Progress in Oceanography, 74, 449–478.

    Article  Google Scholar 

Download references

Acknowledgments

The author expresses gratitude to Profs. Jan Harff and Bodo von Bodungen for their review comments to improve the original manuscript of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zhang, J. (2016). Coastal Bio-geochemical Cycles. In: Harff, J., Meschede, M., Petersen, S., Thiede, J. (eds) Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6238-1_137

Download citation

Publish with us

Policies and ethics