Skip to main content

The Diverse Functions of Phosphatidylinositol Transfer Proteins

  • Chapter
  • First Online:
Phosphoinositides and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 362))

Abstract

Phosphatidylinositol transfer proteins (PITPs), comprising five members in the human genome are implicated in the non-vesicular traffic of phosphatidylinositol (PI) between intracellular membranes and the plasma membrane. Three members of the PITP family (PITPα, PITPβ, and RdgBβ (retinal degeneration type B) alt. name PITPNC1) are present as single domain proteins and two (RdgBαI and RdgBαII alt. name PITPNM1 and PITPNM2) are present as multi-domain proteins with the PITP domain located at the N-terminus. The hallmark of PITP proteins is to extract PI molecules from a membrane, sequester in its binding pocket and deposit the lipid to membranes. PITPs regulate the synthesis of phosphoinositides (PPIs) either by delivery of the substrate, PI to specific membrane compartments or by potentiating the activities of the lipid kinases, or both. In the light of recent studies, we propose that PITPs are regulators of phosphoinositide pathways by recruitment to membranes through specific protein interactions to promote molecular exchange between closely opposed membranes i.e., at membrane contact sites. Individual PITP proteins play highly specific roles in many biological processes including neurite outgrowth, membrane traffic, cytokinesis, and sensory transduction in mammals as well as in the model organisms, Drosophila, Caenorhabditis elegans, and zebrafish. The common requirement for the diverse functions for all PITPs is their ability to bind PI and coupling its function to phosphoinositide-dependent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PPIs:

Phosphoinositides

PI:

Phosphatidylinositol

PITP:

Phosphatidylinositol transfer protein

RdgB:

Retinal degeneration type B

PC:

Phosphatidylcholine

PI(4,5)P2 :

Phosphatidylinositol (4,5) bisphosphate

PA:

Phosphatidic acid

HAD:

Haloacid dehalogenase

PCTP:

PC transfer protein

HL60:

Human promyelocytic leukemia cells

DCC:

Deleted in colon cancer

COP-1:

Coat protein complex-1

SRC:

Subrhabdomeric cisternae

PIS:

PI synthase

CDS:

CDP-DAG synthase

DAG:

Diacylglycerol

ERG:

Electroretinogram

ATRAP (alt. name AGTRAP):

Angiotensin II receptor-associated protein

AT1R:

Angiotensin II Type 1 receptor

References

  • Alb JG Jr, Phillips SE, Rostand K, Cui X, Pinxteren J, Cotlin L, Manning TGS, York JD, Sontheimer JF, Collawn JF, Bankaitis VA (2002) Genetic ablation of phosphatidylinositol transfer protein function in murine embryonic stem cells. Mol Biol Cell 13:739–754

    Article  PubMed  CAS  Google Scholar 

  • Alb JG Jr, Cortese JD, Phillips SE, Albin RL, Nagy TR, Hamilton BA, Bankaitis VA (2003) Mice lacking phosphatidylinositol transfer protein alpha exhibit spinocerebellar degeneration, intestinal and hepatic steatosis, and hypoglycemia. J Biol Chem 278:33501–33518

    Article  PubMed  CAS  Google Scholar 

  • Alb JG Jr, Phillips SE, Wilfley LR, Philpot BD, Bankaitis VA (2007) The pathologies associated with functional titration of phosphatidylinositol transfer protein alpha activity in mice. J Lipid Res 48:1857–1872

    Article  PubMed  CAS  Google Scholar 

  • Allen-Baume V, Segui B, Cockcroft S (2002) Current thoughts on the phosphatidylinositol transfer protein family. FEBS Lett 531:74–80

    Article  PubMed  CAS  Google Scholar 

  • Amarilio R, Ramachandran S, Sabanay H, Lev S (2005) Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction. J Biol Chem 280:5934–5944

    Article  PubMed  CAS  Google Scholar 

  • Bailes HJ, Lucas RJ (2010) Melanopsin and inner retinal photoreception. Cell Mol Life Sci 67:99–111

    Article  PubMed  CAS  Google Scholar 

  • Carvou N, Holic R, Li M, Futter C, Skippen A, Cockcroft S (2010) Phosphatidylinositol- and phosphatidylcholine- transfer activity of PITPβ is essential for COP1-mediated retrograde transport from the Golgi to the endoplasmic reticulum. J Cell Sci 123:1262–1273

    Article  PubMed  CAS  Google Scholar 

  • Chang JT, Milligan S, Li Y, Chew CE, Wiggs J, Copeland NG, Jenkins NA, Campochiaro PA, Hyde DR, Zack DJ (1997) Mammalian homolog of Drososphila retinal degeneration B rescues the mutant fly phenotype. J Neurosci 17:5881–5890

    PubMed  CAS  Google Scholar 

  • Chen J, Yao Y, Gong C, Yu F, Su S, Chen J, Liu B, Deng H, Wang F, Lin L, Yao H, Su F, Anderson KS, Liu Q, Ewen ME, Yao X, Song E (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19:541–555

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S (2007) Trafficking of phosphatidylinositol by phosphatidylinositol transfer proteins. Biochem Soc Symp 74:259–271

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Carvou N (2007) Biochemical and biological functions of class I phosphatidylinositol transfer proteins. Biochim Biophys Acta 1771:677–691

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Garner K (2011) Function of the phosphatidylinositol transfer protein gene family: is phosphatidylinositol transfer the mechanism of action? Crit Rev Biochem Mol Biol 46:89–117

    Article  PubMed  CAS  Google Scholar 

  • Cosker KE, Shadan S, van Diepen M, Morgan C, Li M, Allen-Baume V, Hobbs C, Doherty P, Cockcroft S, Eickholt BJ (2008) Regulation of PI3 K signalling by the phosphatidylinositol transfer protein PITP{alpha} during axonal extension in hippocampal neurons. J Cell Sci 121:796–803

    Article  PubMed  CAS  Google Scholar 

  • Cunningham E, Thomas GMH, Ball A, Hiles I, Cockcroft S (1995) Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2. Current Biol 5:775–783

    Article  CAS  Google Scholar 

  • Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ (1999) Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem 274:17058–17062

    Article  PubMed  CAS  Google Scholar 

  • de Brouwer AP, Versluis C, Westerman J, Roelofsen B, Heck AJ, Wirtz KW (2002) Determination of the stability of the noncovalent phospholipid transfer protein-lipid complex by electrospray time-of-flight mass spectrometry. Biochemistry 41:8013–8018

    Article  PubMed  Google Scholar 

  • de Graaf P, Zwart WT, van Dijken RA, Deneka M, Schulz TK, Geijsen N, Coffer PJ, Gadella BM, Verkleij AJ, van der SP, van Bergen en Henegouwen PM (2004) Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell 15:2038–2047

    Article  PubMed  Google Scholar 

  • Dumaresq-Doiron K, Savard MF, Akam S, Costantino S, Lefrancois S (2010) The phosphatidylinositol 4-kinase PI4KIIIalpha is required for the recruitment of GBF1 to Golgi membranes. J Cell Sci 123:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Elagin VA, Elagina RB, Doro CJ, Vihtelic TS, Hyde DR (2000) Cloning and tissue localization of a novel zebrafish RdgB homolog that lacks a phospholipid transfer domain. Vis Neurosci 17:303–311

    Article  PubMed  CAS  Google Scholar 

  • Fensome A, Cunningham E, Prosser S, Tan SK, Swigart P, Thomas G, Hsuan J, Cockcroft S (1996) ARF and PITP restore GTPγS-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Current Biol 6:730–738

    Article  CAS  Google Scholar 

  • Garner K, Li M, Ugwuanya N, Cockcroft S (2011) The phosphatidylinositol transfer protein, RdgBβ binds 14–3-3 via its unstructured C-terminus, whereas its lipid binding domain interacts with the integral membrane protein, ATRAP (Angiotensin II Type I receptor-associated protein). Biochem J 439:97–111

    Article  PubMed  CAS  Google Scholar 

  • Gatt MK, Glover DM (2006) The Drosophila phosphatidylinositol transfer protein encoded by vibrator is essential to maintain cleavage-furrow ingression in cytokinesis. J Cell Sci 119:2225–2235

    Article  PubMed  CAS  Google Scholar 

  • Giansanti MG, Bonaccorsi S, Kurek R, Farkas RM, Dimitri P, Fuller MT, Gatti P (2006) The class I PITP Giotto is required for Drosophila cytokinesis. Curr Biol 16:195–201

    Article  PubMed  CAS  Google Scholar 

  • Giansanti MG, Belloni G, Gatti M (2007) Rab11 Is required for membrane trafficking and actomyosin ring constriction in meiotic cytokinesis of Drosophila males. Mol Biol Cell 18:5034–5047

    Article  PubMed  CAS  Google Scholar 

  • Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99:2522–2532

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Iyer VR (2006) PI3 K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol 7:R42

    Article  PubMed  Google Scholar 

  • Guo S, Lopez-Ilasaca M, Dzau VJ (2005) Identification of calcium-modulating cyclophilin ligand (CAML) as transducer of angiotensin II-mediated nuclear factor of activated T cells (NFAT) activation. J Biol Chem 280:12536–12541

    Article  PubMed  CAS  Google Scholar 

  • Hamilton BA, Smith DJ, Mueller KL, Kerrebrock AW, Bronson RT, Berkel V, Daly V, Kroglyak MJ, Reeve L, Nernhauser MP, Hawkins JL, Rubin TL, M E, Lander ES (1997) The vibrator mutation causes neurogeneration via reduced expression of PITPα: positional complementation cloning and extragenic suppression. Neuron 18:711–722

    Article  PubMed  CAS  Google Scholar 

  • Hara S, Swigart P, Jones D, Cockcroft S (1997) The first 5 amino acids of the carboxy terminus of phosphatidylinositol transfer protein α (PITPα) play a critical role in inositol lipid signalling: transfer activity of PITP is essential but not sufficient for restoration of phospholipase C signalling. J Biol Chem 272:14909–14913

    Google Scholar 

  • Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001) Calcium influx via TRP channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30:149–159

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Martin TFJ (1993) Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature 366:572–575

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RE, Martin TFJ (1995) ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374:173–177

    Article  PubMed  CAS  Google Scholar 

  • Helmkamp GM Jr, Harvey MS, Wirtz KWA, van Deenen LLM (1974) Phospholipid exchange between membranes. Purification of bovine brain proteins that preferentially catalyze the transfer of phosphatidylinositol. J Biol Chem 249:6382–6389

    PubMed  CAS  Google Scholar 

  • Higgs HN, Han MH, Johnson GE, Glomset JA (1998) Cloning of a phosphatidic acid-preferring phospholipase A1 from bovine testis. J Biol Chem 273:5468–5477

    Article  PubMed  CAS  Google Scholar 

  • Ile KE, Kassen S, Cao C, Vihtehlic T, Shah SD, Mousley CJ, Alb JG Jr, Huijbregts RP, Stearns GW, Brockerhoff SE, Hyde DR, Bankaitis VA (2010) zebrafish class 1 phosphatidylinositol transfer proteins: PITPbeta and double cone cell outer segment integrity in retina. Traffic 11:1151–1167

    Article  PubMed  CAS  Google Scholar 

  • Iwata R, Oda S, Kunitomo H, Iino Y (2011) Roles for class IIA phosphatidylinositol transfer protein in neurotransmission and behavioural plasticity at the sensory neuron synapses of Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:7589–7594

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh A, Thomas GMH, Ball A, Prosser S, Cunningham E, Cockcroft S, Hsuan JJ (1995) Requirement for phosphatidylinositol transfer protein in epidermal growth factor signalling. Science 268:1188–1190

    Article  PubMed  CAS  Google Scholar 

  • Kular G, Loubtchenkov M, Swigart P, Whatmore J, Ball A, Cockcroft S, Wetzker R (1997) Co-operation of phosphatidylinositol transfer protein with phosphoinositide 3-kinase(gamma) in the formylmethionyl-leucylphenylalanine-dependent production of phosphatidylinositol 3,4,5 trisphosphate in human neutrophils. Biochem J 325:299–301

    PubMed  CAS  Google Scholar 

  • Kular GS, Chaudhary A, Prestwich G, Swigart P, Wetzker R, Cockcroft S (2002) Co-operation of phosphatidylinositol transfer protein with phosphoinositide 3-kinase γ in vitro. Adv Enz Reg 42:53–61

    Article  CAS  Google Scholar 

  • Larijani B, Allen-Baume V, Morgan CP, Li M, Cockcroft S (2003) EGF regulation of PITP dynamics is blocked by inhibitors of phospholipase C and of the Ras-MAP kinase pathway. Curr Biol 13:78–84

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Shah S, Suzuki E, Zars T, O’Day PM, Hyde DR (1994) The Drosophila dgq gene encodes a G alpha protein that mediates phototransduction. Neuron 13:1143–1157

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Xu H, Kang LW, Amzel LM, Montell C (2003) Light adaptation through phosphoinositide-regulated translocation of Drosophila visual arrestin. Neuron 39:121–132

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM (2008) A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40:181–188

    Article  PubMed  CAS  Google Scholar 

  • Litvak V, Shaul YD, Shulewitz M, Amarilio R, Carmon S, Lev S (2002) Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain. Curr Biol 12:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Litvak V, Argov R, Dahan N, Ramachandran S, Amarilio R, Shainskaya A, Lev S (2004) Mitotic phosphorylation of the peripheral Golgi protein Nir2 by Cdk1 provides a docking mechanism for Plk1 and affects cytokinesis completion. Mol Cell 14:319–330

    Article  PubMed  CAS  Google Scholar 

  • Litvak V, Dahan N, Ramachandran S, Sabanay H, Lev S (2005) Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat Cell Biol 7:225–234

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Fairn GD, Ceccarelli DF, Sicheri F, Wilde A (2012) Cleavage furrow organization requires PIP(2)-mediated recruitment of anillin. Curr Biol 22:64–69

    Article  PubMed  Google Scholar 

  • Loewen CJ, Roy A, Levine TP (2003) A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 22:2025–2035

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Vihtelic TS, Hyde DR, Li T (1999) A neuronal-specific mammalian homolog of the Drosophila retinal degeneration B gene with expression to the retina and dentate gyrus. J Neurosci 19:7317–7325

    PubMed  CAS  Google Scholar 

  • Lu C, Peng YW, Shang J, Pawlyk BS, Yu F, Li T (2001) The mammalian retinal degeneration B2 gene is not required for photoreceptor function and survival. Neuroscience 107:35–41

    Article  PubMed  CAS  Google Scholar 

  • Miller WL (2007) Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta 1771:663–676

    Article  PubMed  CAS  Google Scholar 

  • Milligan SC, Alb JG, Elagina RB, Bankaitis VA, Hyde DR (1997) The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J Cell Biol 139:351–363

    Article  PubMed  CAS  Google Scholar 

  • Min LJ, Mogi M, Tamura K, Iwanami J, Sakata A, Fujita T, Tsukuda K, Jing F, Iwai M, Horiuchi M (2009) Angiotensin II type 1 receptor-associated protein prevents vascular smooth muscle cell senescence via inactivation of calcineurin/nuclear factor of activated T cells pathway. J Mol Cell Cardiol 47:798–809

    Article  PubMed  CAS  Google Scholar 

  • Ming G, Song H, Berninger B, Inagaki N, Tessier-Lavigne M, Poo M (1999) Phospholipase C-gamma and phosphoinositide 3-kinase mediate cytoplasmic signalling in nerve growth cone guidance. Neuron 23:139–148

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Nakajima K, Hatsuzawa K, Nagahama M, Hauri HP, Tagaya M, Tani K (2000) Determination of functional regions of p125, a novel mammalian Sec23p-interacting protein. Biochem Biophys Res Commun 279:144–149

    Article  PubMed  CAS  Google Scholar 

  • Mogensen JE, Ferreras M, Wimmer R, Petersen SV, Enghild JJ, Otzen DE (2007) The major allergen from birch tree pollen, Bet v 1, binds and permeabilizes membranes. Biochemistry 46:3356–3365

    Article  PubMed  CAS  Google Scholar 

  • Moldrup ML, Georg B, Falktoft B, Mortensen R, Hansen JL, Fahrenkrug J (2010) Light induces Fos expression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells. J Neurochem 112:797–806

    Article  PubMed  CAS  Google Scholar 

  • Morgan CP, Skippen A, Segui B, Ball A, Allen-Baume V, Larijani B, Murray-Rust J, McDonald N, Sapkota G, Morrice NA, Cockcroft S (2004) Phosphorylation of a distinct structural form of phosphatidylinositol transfer protein α at Ser166 by protein kinase C disrupts receptor-mediated phospholipase C signalling by inhibiting delivery of phosphatidylinositol to membranes. J Biol Chem 279:47159–47171

    Article  PubMed  CAS  Google Scholar 

  • Morgan CP, Allen-Baume V, Radulovic M, Li M, Skippen AJ, Cockcroft S (2006) Differential expression of a C-terminal splice variant of PITPβ lacking the constitutive-phosphorylated Ser262 that localises to the Golgi Compartment. Biochem J 398:411–421

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Sonoda H, Mizoguchi T, Aoki J, Arai H, Nagahama M, Tagaya M, Tani K (2002) A novel phospholipase A1 with sequence homology to a mammalian Sec23p-interacting protein, p125. J Biol Chem 277:11329–11335

    Article  PubMed  CAS  Google Scholar 

  • Paetkau DW, Elagin VA, Sendi LM, Hyde DR (1999) Isolation and characterization of Drosophila retinal degeneration B suppressors. Genetics 151:713–724

    PubMed  CAS  Google Scholar 

  • Panaretou C, Domin J, Cockcroft S, Waterfield MD (1997) Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150-PtdIns 3-kinase complex. J Biol Chem 272:2477–2485

    Article  PubMed  CAS  Google Scholar 

  • Phillips SE, Vincent P, Rizzieri KE, Schaaf G, Bankaitis VA, Gaucher EA (2006) The diverse biological functions of phosphatidylinositol transfer proteins in eukaryotes. Crit Rev Biochem Mol Biol 41:21–49

    Article  PubMed  CAS  Google Scholar 

  • Png KJ, Halberg N, Yoshida M, Tavazoie SF (2012) A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481:190–194

    Article  CAS  Google Scholar 

  • Polevoy G, Wei HC, Wong R, Szentpetery Z, Kim YJ, Goldbach P, Steinbach SK, Balla T, Brill JA (2009) Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis. J Cell Biol 187:847–858

    Article  PubMed  CAS  Google Scholar 

  • Radauer C, Lackner P, Breiteneder H (2008) The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol Biol 8:286

    Article  PubMed  Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    PubMed  CAS  Google Scholar 

  • Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KW, Gros P (2002) Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association. EMBO J 21:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Segui B, Allen-Baume V, Cockcroft S (2002) Phosphatidylinositol transfer protein-beta displays minimal sphingomyelin transfer activity and is not required for biosynthesis and trafficking of sphingomyelin. Biochem J 366:23–34

    PubMed  CAS  Google Scholar 

  • Shadan S, Holic R, Carvou N, Ee P, Li M, Murray-Rust J, Cockcroft S (2008) Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells. Traffic 9:1743–1756

    Article  PubMed  CAS  Google Scholar 

  • Stark WS, Sapp R (1987) Ultrastructure of the retina of Drosophila melanogaster: the mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). J Neurogenet 4:227–240

    PubMed  CAS  Google Scholar 

  • Takano N, Owada Y, Suzuki R, Sakagami H, Shimosegawa T, Kondo H (2003) Cloning and characterization of a novel variant (mM-rdgBbeta1) of mouse M-rdgBs, mammalian homologs of Drosophila retinal degeneration B gene proteins, and its mRNA localization in mouse brain in comparison with other M-rdgBs. J Neurochem 84:829–839

    Article  PubMed  CAS  Google Scholar 

  • Tani K, Mizoguchi T, Iwamatsu A, Hatsuzawa K, Tagaya M (1999) p125 is a novel mammalian Sec23p-interacting protein with structural similarity to phospholipid-modifying proteins. J Biol Chem 274:20505–20512

    Article  PubMed  CAS  Google Scholar 

  • Thomas GMH, Cunningham E, Fensome A, Ball A, Totty NF, Troung O, Hsuan JJ, Cockcroft S (1993) An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signalling. Cell 74:919–928

    Article  PubMed  CAS  Google Scholar 

  • Tilley SJ, Skippen A, Murray-Rust J, Swigart P, Stewart A, Morgan CP, Cockcroft S, McDonald NQ (2004) Structure-function analysis of human phosphatidylinositol transfer protein alpha bound to phosphatidylinositol. Structure 12:317–326

    PubMed  CAS  Google Scholar 

  • Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y (2006) The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 51:613–625

    Article  PubMed  CAS  Google Scholar 

  • Trivedi D, Padinjat R (2007) RdgB proteins: functions in lipid homeostasis and signal transduction. Biochim Biophys Acta 1771:692–699

    Article  PubMed  CAS  Google Scholar 

  • van Tiel CM, Westerman J, Paasman M, Wirtz KWA, Snoek GT (2000) The protein kinase C-dependent phosphorylation of serine-166 is controlled by the phospholipid species bound to the phosphatidylinositol transfer protein α. J Biol Chem 275:21532–21538

    Article  PubMed  Google Scholar 

  • Vihtelic TS, Goebl M, Milligan S, O’Tousa SE, Hyde DR (1993) Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein. J Cell Biol 122:1013–1022

    Article  PubMed  CAS  Google Scholar 

  • Vordtriede PB, Doan CN, Tremblay JM, Helmkamp GM Jr, Yoder MD (2005) Structure of PITPβ in complex with phosphatidylcholine: comparison of structure and lipid transfer to other PITP isoforms. Biochemistry 44:14760–14771

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Montell C (2006) A phosphoinositide synthase required for a sustained light response. J Neurosci 26:12816–12825

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Huang Y, Zhou Z, Tang R, Zhao W, Zeng L, Xu M, Cheng C, Gu S, Ying K, Xie Y, Mao Y (2002) Identification and characterization of AGTRAP, a human homolog of murine angiotensin II receptor-associated protein (Agtrap). Int J Biochem Cell Biol 34:93–102

    Article  PubMed  CAS  Google Scholar 

  • Way G, O’Luanaigh N, Cockcroft S (2000) Activation of exocytosis by cross-linking of the IgE receptor is dependent on ARF-regulated phospholipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of PIP2 synthesis. Biochem J 346:63–70

    Article  PubMed  CAS  Google Scholar 

  • Wirtz KW, Schouten A, Gros P (2006) Phosphatidylinositol transfer proteins: from closed for transport to open for exchange. Adv Enzyme Regul 46:301–311

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Ding YQ, Hong Y, Feng Z, navarre S, Xi CX, Wang CL, Zhu XJ, Ackerman SL, Kozlowski D, Mei L, Xiong WC (2005) Role of phosphatidylinositol transfer protein α in netrin-1-induced PLC signalling and neurite outgrowth. Nature Cell Biol 7:1124–1132

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Hong Y, Ma XY, Ren XR, Ackerman S, Mei L, Xiong WC (2006) DCC-dependent phospholipase C signaling in netrin-1-induced neurite elongation. J Biol Chem 281:2605–2611

    Article  PubMed  CAS  Google Scholar 

  • Yoder MD, Thomas LM, Tremblay JM, Oliver RL, Yarbrough LR, Helmkamp GM Jr (2001) Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J Biol Chem 276:9246–9252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamshad Cockcroft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cockcroft, S. (2012). The Diverse Functions of Phosphatidylinositol Transfer Proteins. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_9

Download citation

Publish with us

Policies and ethics