Skip to main content

Cell-Free Protein Synthesis Using E. coli Cell Extract for NMR Studies

  • Chapter
  • First Online:
Isotope labeling in Biomolecular NMR

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 992))

Abstract

The use of cell-free protein production systems for producing isotope labeled proteins generates new opportunities to perform unprecedented NMR studies. As compared with conventional cellular expression systems, the scrambling and dilution of amino acids are highly suppressed in the cell-free reaction, allowing the production of proteins with a wide variety of residue and site-specific isotope labeling patterns. In this chapter, the procedure for cell-free protein synthesis for NMR studies, using an E. coli extract, is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 6:129–134

    Article  PubMed  CAS  Google Scholar 

  2. Zubay G (1973) In vitro synthesis of protein in microbial systems. Ann Rev Genet 7:267–287

    Article  PubMed  CAS  Google Scholar 

  3. Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  PubMed  CAS  Google Scholar 

  4. Kim DM, Kigawa T, Choi CY, Yokoyama S (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur J Biochem 239:881–886

    Article  PubMed  CAS  Google Scholar 

  5. Kigawa T, Yabuki T, Yoshida Y, Tsutsui M, Ito Y, Shibata T, Yokoyama S (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19

    Article  PubMed  CAS  Google Scholar 

  6. Kramer G, Kudlicki W, Hardesty B (1999) Cell-free coupled transcription-translation systems from Escherichia coli. Oxford University Press, New York, pp 129–165

    Google Scholar 

  7. Kim DM, Swartz JR (2000) Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol Prog 16:385–390

    Article  PubMed  CAS  Google Scholar 

  8. Madin K, Sawasaki T, Ogasawara T, Endo Y (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc Natl Acad Sci USA 97:559–564

    Article  PubMed  CAS  Google Scholar 

  9. Endo Y, Sawasaki T (2003) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. Biotechnol Adv 21:695–713

    Article  PubMed  CAS  Google Scholar 

  10. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  PubMed  CAS  Google Scholar 

  11. Shimizu Y, Ueda T (2010) PURE technology. Methods Mol Biol 607:11–21

    Article  PubMed  CAS  Google Scholar 

  12. Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ (2004) A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc 126:5020–5021

    Article  PubMed  CAS  Google Scholar 

  13. Wu PS, Ozawa K, Jergic S, Su XC, Dixon NE, Otting G (2006) Amino-acid type identification in 15N-HSQC spectra by combinatorial selective 15N-labelling. J Biomol NMR 34:13–21

    Article  PubMed  CAS  Google Scholar 

  14. Ozawa K, Headlam MJ, Mouradov D, Watt SJ, Beck JL, Rodgers KJ, Dean RT, Huber T, Otting G, Dixon NE (2005) Translational incorporation of L-3,4-dihydroxyphenylalanine into proteins. FEBS J 272:3162–3171

    Article  PubMed  CAS  Google Scholar 

  15. Ugwumba IN, Ozawa K, de la Cruz L, Xu ZQ, Herlt AJ, Hadler KS, Coppin C, Brown SE, Schenk G, Oakeshott JG, Otting G (2011) Using a genetically encoded fluorescent amino acid as a site-specific probe to detect binding of low-molecular-weight compounds. Assay Drug Dev Technol 9:50–57

    Article  PubMed  CAS  Google Scholar 

  16. Loscha KV, Herlt AJ, Qi R, Huber T, Ozawa K, Otting G (2012) Multiple-site labeling of proteins with unnatural amino acids. Angew Chem Int Ed 51:1–5

    Article  Google Scholar 

  17. Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löhr F, Bernhard F, Dötsch V (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43

    Article  PubMed  CAS  Google Scholar 

  18. Junge F, Haberstock S, Roos C, Stefer S, Proverbio D, Dötsch V, Bernhard F (2011) Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N Biotechnol 28:262–271

    Article  PubMed  CAS  Google Scholar 

  19. Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 50:11942–11946

    Article  PubMed  CAS  Google Scholar 

  20. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  PubMed  CAS  Google Scholar 

  21. Kainosho M, Güntert P (2009) SAIL-Stereo-array isotope labeling. Q Rev Biophys 7:1–54

    Google Scholar 

  22. Takeda M, Chang CK, Ikeya T, Güntert P, Chang YH, Hsu YL, Huang TH, Kainosho M (2008) Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol 380:608–622

    Article  PubMed  CAS  Google Scholar 

  23. Takeda M, Sugimori N, Torizawa T, Terauchi T, Ono AM, Yagi H, Yamaguchi Y, Kato K, Ikeya T, Jee J, Güntert P, Aceti DJ, Markley JL, Kainosho M (2008) Structure of the putative 32 kDa myrosinase binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. FEBS J 275:5873–5884

    Article  PubMed  CAS  Google Scholar 

  24. Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M (2011) Hydrogen exchange study on the hydroxyl groups of serine and threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups. J Am Chem Soc 133:17420–17427

    Article  PubMed  CAS  Google Scholar 

  25. Kim DM, Choi CY (1996) A semicontinuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649

    Article  PubMed  CAS  Google Scholar 

  26. Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093

    Article  PubMed  CAS  Google Scholar 

  27. Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR 30:311–325

    Article  PubMed  CAS  Google Scholar 

  28. Nirenberg M (1963) Cell-free protein synthesis directed by messenger RNA. Methods Enzymol 6:17–23

    Article  CAS  Google Scholar 

  29. Pratt JM (1984) Coupled transcription-translation in prokaryotic cell-free systems. In: Hames BD, Higgins SJ (eds) Transcription and translation: a practical approach. IRL Press, Oxford, pp 179–209

    Google Scholar 

  30. Liu DV, Zawada JF, Swartz JR (2005) Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis. Biotechnol Prog 21:460–465

    Article  PubMed  CAS  Google Scholar 

  31. Takeda M, Ikeya T, Güntert P, Kainosho M (2007) Automated structure determination of proteins with the SAIL-FLYA NMR method. Nat Protoc 2:2896–2902

    Article  PubMed  CAS  Google Scholar 

  32. Takeda M, Kainosho M (2012) Cell-free protein production for NMR studies. Methods Mol Biol 831:71–84

    Article  PubMed  CAS  Google Scholar 

  33. Schindler PT, Baumann S, Reuss M, Siemann M (2000) In vitro coupled transcription translation: effects of modification in lysate preparation on protein composition and biosynthesis activity. Electrophoresis 21:2606–2609

    Article  PubMed  CAS  Google Scholar 

  34. Zawada J, Swartz JR (2006) Effects of growth rate on cell extract performance in cell-free protein synthesis. Biotechnol Bioeng 94:618–624

    Article  PubMed  CAS  Google Scholar 

  35. Kim TW, Keum JW, Oh IS, Choi CY, Park CG, Kim DM (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol 126:554–561

    Article  PubMed  CAS  Google Scholar 

  36. Pedersen A, Hellberg K, Enberg J, Karlsson BG (2011) Rational improvement of cell-free protein synthesis. N Biotechnol 30:218–224

    Article  Google Scholar 

  37. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  PubMed  CAS  Google Scholar 

  38. Wu PS, Ozawa K, Lim SP, Vasudevan SG, Dixon NE, Otting G (2007) Cell-free transcription/translation from PCR-amplified DNA for high-throughput NMR studies. Angew Chem Int Ed Engl 46:3356–3358

    Article  PubMed  CAS  Google Scholar 

  39. Kawarasaki Y, Nakano H, Yamane T (1998) Phosphatase-immunodepleted cell-free protein synthesis system. J Biotechnol 61:199–208

    Article  PubMed  CAS  Google Scholar 

  40. Etezady-Esfarjani T, Hiller S, Villalba C, Wüthrich K (2007) Cell-free protein synthesis of perdeuterated proteins for NMR studies. J Biomol NMR 39:229–238

    Article  PubMed  CAS  Google Scholar 

  41. Tonelli M, Singarapu KK, Makino S, Sahu SC, Matsubara Y, Endo Y, Kainosho M, Markley JL (2011) Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition. J Biomol NMR 51:467–476

    Article  PubMed  CAS  Google Scholar 

  42. Jia X, Ozawa K, Loscha K, Otting G (2009) Glutarate and N-acetyl-L-glutamate buffers for cell-free synthesis of selectively 15N-labelled proteins. J Biomol NMR 44:59–67

    Article  PubMed  CAS  Google Scholar 

  43. Yokoyama J, Matsuda T, Koshiba S, Tochio N, Kigawa T (2011) A practical method for cell-free protein synthesis to avoid stable isotope scrambling and dilution. Anal Biochem 411:223–229

    Article  PubMed  CAS  Google Scholar 

  44. Su XC, Loh CT, Qi R, Otting G (2011) Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O. J Biomol NMR 50:35–42

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatsune Kainosho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takeda, M., Kainosho, M. (2012). Cell-Free Protein Synthesis Using E. coli Cell Extract for NMR Studies. In: Atreya, H. (eds) Isotope labeling in Biomolecular NMR. Advances in Experimental Medicine and Biology, vol 992. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4954-2_9

Download citation

Publish with us

Policies and ethics