Skip to main content
Log in

EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To evaluate the molecular mechanisms during pod and seed formation in legumes, starting with the development of reproductive organs, we constructed two cDNA libraries from developing flowers (MtFLOW) and pods including seeds (MtPOSE) of the model plant Medicago truncatula Gaertner. A total of 2,516 expressed sequence tags (ESTs) clustered into 1,776 nonredundant sequences (2k-set), which were annotated and assigned to functional classes. While about 30% of the ESTs encoded proteins of yet unknown function, typical annotations pointed to seed storage proteins, LTPs and lipoxygenases. The 2k-set was used to upgrade Mt6k-RIT microarrays (Küster et al. in J Biotechnol 108: 95, 2004) to Mt8k versions representing approximately 6,300 nonredundant M. truncatula genes. These were used to perform time course expression profiling studies based on hybridizations of samples that covered eight different developmental stages from flower buds to almost mature pods versus leaves as a common reference. About 180 up- and 70 downregulated genes were typically found for each stage and in total, 782 genes were either twofold up- or downregulated in at least one of the eight stages investigated. Based on this set, a combination of self-organizing map and hierarchical clustering revealed genes displaying expression regulation during characteristic stages of M. truncatula flower and pod development. Amongst those, several genes encoded proteins related to seed metabolism and development including novel regulators and proteins involved in signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

LTP:

Nonspecific lipid transfer protein

MENS:

Medicago EST navigation system

SOM:

Self-organizing map

TC:

Tentative consensus sequence

References

  • Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D’Ascenzo M, Gordon JS, Rose JK, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714

    Google Scholar 

  • Bach I, Ostendorff HP (2003) Orchestrating nuclear functions: ubiquitin sets the rhythm. Trends Biochem Sci 28:189–195

    CAS  PubMed  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijó JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Google Scholar 

  • Blein JP, Coutos-Thévenot P, Marion D, Ponchet M (2002) From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defense mechanisms. Trends Plant Sci 7:293–296

    CAS  PubMed  Google Scholar 

  • de Bodt S, Raes J, Van de Peer Y, Theißen G (2003) And then there were many: MADS goes genomic. Trends Plant Sci 8:475–481

    PubMed  Google Scholar 

  • Buchner P, Rochat C, Wuillème S, Boutin JP (2002) Characterization of a tissue-specific and developmentally regulated beta-1,3-glucanase gene in pea (Pisum sativum). Plant Mol Biol 49:171–186

    Google Scholar 

  • Bunker TW, Koetje DS, Stephenson LC, Creelman RA, Mullet JE, Grimes HD (1995) Sink limitation induces the expression of multiple soybean vegetative lipoxygenase mRNAs while the endogenous jasmonic acid level remains low. Plant Cell 7:1319–1331

    Google Scholar 

  • Cohn JR, Uhm T, Ramu S, Nam YW, Kim DJ, Varma Penmetsa R, Wood TC, Denny RL, Young ND, Cook DR, Stacey G (2001) Differential regulation of a family of apyrase genes from Medicago truncatula. Plant Physiol 125:2104–2119

    Google Scholar 

  • Cook DR, VandenBosch K, de Bruijn FJ, Huguet T (1997) Model legumes get the nod. Plant Cell 9:275–281

    Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    CAS  PubMed  Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885

    Google Scholar 

  • Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Pühler A, Meyer F (2003) EMMA: a platform for consistent storage and efficient analysis of microarray data. J Biotechnol 106:135–146

    CAS  PubMed  Google Scholar 

  • Dong J, Keller WA, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218:483–491

    Google Scholar 

  • van Doorn WG, Balk PA, van Houwelingen AM, Hoeberichts FA, Hall RD, Vorst O, van der Schoot C, van Wordragen MF (2003) Gene expresssion during anthesis and senescence in Iris flowers. Plant Mol Biol 53:845–863

    Google Scholar 

  • Dubbs WE, Grimes HD (2000) Specific lipoxygenase isoforms accumulate in distinct regions of soybean pod walls and mark a unique cell layer. Plant Physiol 123:1269–1280

    Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  CAS  PubMed  Google Scholar 

  • El Yahyaoui F, Küster H, Amor BB, Hohnjec N, Pühler A, Becker A, Gouzy J, Vernié T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176

    Google Scholar 

  • Endo M, Kokobun T, Takahata Y, Higashitani A, Tabata S, Watanabe M (2000) Analysis of expressed sequence tags of flower buds in Lotus japonicus. DNA Res 7:213–216

    CAS  PubMed  Google Scholar 

  • Endo M, Hakozaki H, Kokubun T, Masuko H, Takahata Y, Tsuchiya T, Higashitani A, Tabata S, Watanabe M (2002a) Generation of 919 expressed sequence tags from immature flower buds and gene expression analysis using expressed sequence tags in the model plant Lotus japonicus. Genes Genet Syst 77:277–282

    CAS  PubMed  Google Scholar 

  • Endo M, Matsubara H, Koubun T, Masuko H, Takahata Y, Tsuchiya T, Fukuda H, Demura T, Watanabe M (2002b) The advantages of cDNA microarray as an effective tool for identification of reproductive organ-specific genes in a model legume, Lotus japonicus. FEBS Lett 514:229–237

    CAS  PubMed  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Google Scholar 

  • Golombek S, Rolletschek H, Wobus U, Weber H (2001) Control of storage protein accumulation during legume seed development. J Plant Physiol 158:457–464

    Google Scholar 

  • Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    Google Scholar 

  • Halitschke R, Baldwin IT (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 36:794–807

    Google Scholar 

  • Haruta M, Constabel CP (2003) Rapid alkalinization factors in poplar cell cultures. Peptide isolation, cDNA cloning, and differential expression in leaves and methyl jasmonate-treated cells. Plant Physiol 131:814–823

    Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Google Scholar 

  • Hennig L, Gruissem W, Grossniklaus U, Köhler C (2004) Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol 135:1765–1775

    Google Scholar 

  • Hohnjec N, Perlick AM, Pühler A, Küster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant-Microbe Interact 16:903–915

    Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Google Scholar 

  • Hu W, Wang Y, Bowers C, Ma H (2004) Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol Biol 53:545–563

    Article  Google Scholar 

  • Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P (2002) Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 30:5579–5592

    PubMed  Google Scholar 

  • Kennedy GC, Wilson IW (2004) Plant functional genomics: opportunities in microarray databases and data mining. Func Plant Biol 31:295–314

    CAS  Google Scholar 

  • Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. J Biotechnol 108:95–113

    PubMed  Google Scholar 

  • Lamblin AFJ, Crow JA, Johnson JE, Silverstein KAT, Kunau TM, Kilian A, Benz D, Stromvik M, Endre G, VandenBosch KA, Cook DR, Young ND, Retzel EF (2003) MtDB, a database for personalized data mining of the model legume Medicago truncatula transcriptome. Nucleic Acids Res 31:196–201

    CAS  PubMed  Google Scholar 

  • Liang F, Holt I, Pertea G, Karamycheva S, Salzberg SL, Quackenbush J (2000) An optimized protocol for analysis of EST sequences. Nucleic Acids Res 28:3657–3665

    CAS  PubMed  Google Scholar 

  • Mandaokar A, Kumar VD, Amway M, Browse J (2003) Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol Biol 52:775–786

    Google Scholar 

  • Manthey M, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant-Microbe Interact 17:1063–1077

    CAS  PubMed  Google Scholar 

  • May GD, Dixon RA (2004) Medicago truncatula. Curr Biol 14:R180–R181

    CAS  PubMed  Google Scholar 

  • Meyers BC, Galbraith DW, Nelson T, Agrawal V (2004) Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant Physiol 135:637–652

    Google Scholar 

  • Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiol 132:1950–1960

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Gochicoa MT, Camut S, Niebel A, Cullimore JV (2003) Expression of the apyrase-like APY1 genes in roots of Medicago truncatula is induced rapidly and transiently by stress and not by Sinorhizobium meliloti or Nod factors. Plant Physiol 131:1124–1136

    Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    CAS  PubMed  Google Scholar 

  • Oldroyd GED, Geurts R (2001) Medicago truncatula, going where no plant has gone before. Trends Plant Sci 6:552–554

    CAS  PubMed  Google Scholar 

  • Percy JD, Philip R, Vodkin LO (1999) A defective seed coat pattern (Net) is correlated with the post-transcriptional abundance of soluble proline-rich cell wall proteins. Plant Mol Biol 40:603–613

    Google Scholar 

  • Rodriguez-Llorente ID, Perez-Hormaeche J, Mounadi KE, Dary M, Caviedes MA, Cosson V, Kondorosi A, Ratet P, Palomares AJ (2004) From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J 39:587–598

    Google Scholar 

  • Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J 15:821–833

    Article  CAS  PubMed  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapunctal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Google Scholar 

  • Sanchez AM, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004) Pistil factors controlling pollination. Plant Cell 16:S98–S106

    Google Scholar 

  • Schnable PS, Hochholdinger F, Nakazono M (2004) Global expression profiling applied to plant development. Curr Opin Plant Biol 7:50–56

    CAS  PubMed  Google Scholar 

  • Schuurmans JA, van Dongen JT, Rutjens BP, Boonman A, Pieterse CM, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol 53:633–645

    Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46-S60

    Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96:2907–2912

    CAS  PubMed  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    CAS  PubMed  Google Scholar 

  • Thoquet P, Ghérardi M, Journet EP, Kereszt A, Ané JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1–13

    PubMed  Google Scholar 

  • VandenBosch K, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131:840–865

    Google Scholar 

  • Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    Article  PubMed  Google Scholar 

  • Weber H, Borisjuk L, Heim U, Sauer N, Wobus U (1997) A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in faba bean seeds. Plant Cell 9:895–908

    Google Scholar 

  • Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314–1326

    Google Scholar 

  • White JA, Todd J, Newman T, Focks N, Girke T, de Ilárduya OM, Jaworski JG, Ohlrogge JB, Benning C (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124:1582–1594

    Google Scholar 

  • Wobus U, Weber H (1999) Seed maturation genetic programmes and control signal. Curr Opin Plant Biol 2:33–38

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Anke Becker (Institute of Genome Research, CeBiTec, Bielefeld University) for printing Mt8k microarrays. We are grateful to Thomas Bekel, Daniela Bartels, Michael Dondrup and Folker Meyer (Bioinformatics Resource Facility, CeBiTec, Bielefeld University) as well as Jérôme Gouzy (INRA-CNRS Toulouse, France) for providing indispensable bioinformatics tools. We also thank Victoria Bartelsmeier, Tanja Thias and Eva Schulte–Berndt (CeBiTec, Bielefeld University) for excellent technical support. We are grateful to Etienne-Pascal Journet, Pascal Gamas, Diederik van Tuinen and Vivienne Gianinazzi-Pearson (INRA-CNRS Toulouse, France; INRA Dijon, France) for sharing probes from the Mt6k-RIT collection. This work was supported by the European Union projects MEDICAGO (QLG-CT2000-00676) and GRAIN LEGUMES (FOOD-CT-2004-506223). Helge Küster acknowledges financial support by the “International NRW Graduate School in Bioinformatics and Genome Research”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Küster.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firnhaber, C., Pühler, A. & Küster, H. EST sequencing and time course microarray hybridizations identify more than 700 Medicago truncatula genes with developmental expression regulation in flowers and pods. Planta 222, 269–283 (2005). https://doi.org/10.1007/s00425-005-1543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1543-3

Keywords

Navigation