Skip to main content

GAPDH and Intermediary Metabolism

  • Chapter
  • First Online:
GAPDH: Biological Properties and Diversity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 985))

Abstract

GAPDH plays a major enzymatic role in the intermediary metabolism of human tissues. In fact, the cells of all organisms require the catalytic capability of GAPDH in order to maintain adequate glycolytic flux. Even the primitive archaea rely on GAPDH in a pivotal step in the Entner-Doudoroff pathway, which is a series of reactions that resembles glycolysis. GAPDH catalyzes the sixth reaction of glycolysis in eukaryotic cells and represents a regulatory hurdle in anaerobic glycolysis. The triose substrate of GAPDH is actually a product of several important metabolic pathways: stage one of glycolysis, fructose catabolism, pentose phosphate pathway and glycerol metabolism. The GAPDH reaction is reversible, hence, necessary for hepatic gluconeogenesis. The chapter discusses GAPDH as being a metabolic ‘switching station’, diverting carbon flow appropriately. There is discussion regarding the experimental analysis of GAPDH’s enzymatic function, particularly in the use of inhibitors. The GAPDH gene is portrayed in the context of the enzyme’s role in metabolism. The observed intolerance to genetic mutation suggests that the genetic changes (i.e. those seen across species) may provide a treasure of information regarding the limits of genetic variability that can be tolerated and still allow for the protein to conduct essential glycolytic – as well as non-glycolytic – functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williamson JR (1965) Glycolytic control mechanisms. J Biol Chem 240:2308–2321

    PubMed  CAS  Google Scholar 

  2. Velick SF, Furfine C (1963) Glyceraldehyde 3-phosphate dehydrogenase. In: Boyer PD (ed) The enzymes, vol 7. Academic, New York

    Google Scholar 

  3. Klingenberg M, Slenczka W, Ritt E (1959) Comparative biochemistry of the pyridine nucleotide system in the mitochondria of various organs. Biochem Z 332:47–66

    PubMed  CAS  Google Scholar 

  4. Williamson JR, Krebs HA (1961) Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J 80:540–547

    PubMed  CAS  Google Scholar 

  5. Godon C, Lagniel G, Lee J et al (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489

    Article  PubMed  CAS  Google Scholar 

  6. Desaint S, Luriau S, Aude JC et al (2004) Mammalian antioxidant defenses are not inducible by H2O2. J Biol Chem 279:31157–31163

    Article  PubMed  CAS  Google Scholar 

  7. Ravichandran V, Seres T, Moriguchi T et al (1994) S-thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015

    PubMed  CAS  Google Scholar 

  8. Newman SF, Sultana R, Perluigi M et al (2007) An increase in S-glutathionylated proteins in the Alzheimer’s disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85:1506–1514

    Article  PubMed  CAS  Google Scholar 

  9. Chuang DM, Hough C, Senatorov VV (2005) Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 45:269–290

    Article  PubMed  CAS  Google Scholar 

  10. Shenton D, Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374:513–519

    Article  PubMed  CAS  Google Scholar 

  11. Colussi C, Albertini MC, Coppola S et al (2000) H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. FASEB J 14:2266–2276

    Article  PubMed  CAS  Google Scholar 

  12. Dastoor Z, Dreyer JL (2001) Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci 114:1643–1653

    PubMed  CAS  Google Scholar 

  13. Ralser M, Wamelink MM, Kowald A et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10

    Article  PubMed  Google Scholar 

  14. Daly ME, Vale C, Walker M et al (1998) Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. Am J Clin Nutr 67:1186–1196

    PubMed  CAS  Google Scholar 

  15. van der Meer R, Akerboom TP, Groen AK et al (1978) Relationship between oxygen uptake of perifused rat-liver cells and the cytosolic phosphorylation state calculated from indicator metabolites and a redetermined equilibrium constant. Eur J Biochem 84:421–428

    Article  PubMed  Google Scholar 

  16. Pette D, Dölken G (1975) Some aspects of regulation of enzyme levels in muscle energy-supplying metabolism. Adv Enzyme Regul 13:355–377

    Article  PubMed  CAS  Google Scholar 

  17. Bünger R, Mukohara N, Kang YH et al (1991) Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase. Eur J Biochem 202:913–921

    Article  PubMed  Google Scholar 

  18. Scrutton MC, Utter MF (1968) The regulation of glycolysis and gluconeogenesis in animal tissues. In: Boyer PD, Meister A, Sinsheimer RL, Snell EE (eds) Annual review of biochemistry, vol 37. Annual Reviews, Palo Alto

    Google Scholar 

  19. Habenicht A (1997) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase: biochemistry, structure, occurrence and evolution. Biol Chem 378:1413–1419

    PubMed  CAS  Google Scholar 

  20. Chance B, Estabrook RW, Ghosh A (1964) Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc Natl Acad Sci USA 51:1244–1251

    Article  PubMed  CAS  Google Scholar 

  21. Hommes FA, Schuurmansstekhoven FM (1964) Aperiodic changes of reduced nicotinamide-adenine dinucleotide during anaerobic glycolysis in brewer’s yeast. Biochim Biophys Acta 86:427–428

    Article  PubMed  CAS  Google Scholar 

  22. Duysens LN, Amesz J (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim Biophys Acta 24:19–26

    Article  PubMed  CAS  Google Scholar 

  23. Chance B, Schoener B, Elsaesser S (1965) Metabolic control phenomena involved in damped sinusoidal oscillations of reduced diphosphopyridine nucleotide in a cell-free extract of Saccharomyces carlsbergensis. J Biol Chem 240:3170–3181

    PubMed  CAS  Google Scholar 

  24. Tilton WM, Seaman C, Carriero D et al (1991) Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios. J Lab Clin Med 118:146–152

    PubMed  CAS  Google Scholar 

  25. Smythe CV (1936) The reactions of iodoacetate and of iodoacetamide with various sulfhydryl groups, with urease, and with yeast preparations. J Biol Chem 114:601–612

    CAS  Google Scholar 

  26. Williamson JR (1967) Glycolytic control mechanisms. 3. Effects of iodoacetamide and fluoroacetate on glucose metabolism in the perfused rat heart. J Biol Chem 242:4476–4485

    PubMed  CAS  Google Scholar 

  27. Dioudis C, Dimitrios G, Thomas TH et al (2008) Abnormal glyceraldehyde-3-phosphate dehydrogenase binding and glycolytic flux in autosomal dominant polycystic kidney disease after a mild oxidative stress. Hippokratia 12:162–167

    PubMed  CAS  Google Scholar 

  28. Brodie AE, Reed DJ (1990) Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposureto hydroperoxides. Arch Biochem Biophys 276:212–218

    Article  PubMed  CAS  Google Scholar 

  29. Sakai K, Hasumi K, Endo A (1991) Identification of koningic acid (heptelidic acid)-modified site in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1077:192–196

    Article  PubMed  CAS  Google Scholar 

  30. Sakai K, Hasumi K, Endo A (1990) Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii. Eur J Biochem 193:195–202

    Article  PubMed  CAS  Google Scholar 

  31. Sakai K, Hasumi K, Endo A (1988) Inactivation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by koningic acid. Biochim Biophys Acta 952:297–303

    Article  PubMed  CAS  Google Scholar 

  32. Izutani Y, Murai T, Imoto T et al (2005) Gymnemic acids inhibit rabbit glyceraldehyde-3-phosphate dehydrogenase and induce a smearing of its electrophoretic band and dephosphorylation. FEBS Lett 579:4333–4336

    Article  PubMed  CAS  Google Scholar 

  33. Medvedev A, Buneeva O, Gnedenko O et al (2006) Isatin interaction with glyceraldehyde-3-phosphate dehydrogenase, a putative target of neuroprotective drugs: partial agonism with deprenyl. J Neural Transm Suppl 71:97–103

    Article  PubMed  CAS  Google Scholar 

  34. Kondo S, Kubota S, Mukudai Y et al (2011) Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochem Biophys Res Commun 405:382–387

    Article  PubMed  CAS  Google Scholar 

  35. Eaton P, Wright N, Hearse DJ et al (2002) Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol 34:1549–1560

    Article  PubMed  CAS  Google Scholar 

  36. Bruice PY, Wilson SC, Bruice TC (1978) Inactivation of glyceraldehyde-3-phosphate dehydrogenase and yeast alcohol dehydrogenase by arene oxides. Biochemistry 17:1662–1669

    Article  PubMed  CAS  Google Scholar 

  37. Chernorizov KA, Elkina JL, Semenyuk PI et al (2010) Novel inhibitors of glyceraldehyde-3-phosphate dehydrogenase: covalent modification of NAD-binding site by aromatic thiols. Biochemistry (Mosc) 75:1444–1449

    Article  CAS  Google Scholar 

  38. McCaul S, Byers LD (1976) The reaction of epoxides with yeast glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 72:1028–1034

    Article  PubMed  CAS  Google Scholar 

  39. Tang Z, Yuan S, Hu Y et al (2012) Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-Bromopyruvate Propyl Ester. J Bioenerg Biomembr 44:117–125

    Article  PubMed  CAS  Google Scholar 

  40. Sansbury BE, Riggs DW, Brainard RE et al (2011) Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochem J 435:519–528

    Article  PubMed  CAS  Google Scholar 

  41. Wick AN, Drury DR, Nakada HI et al (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 224:963–969

    PubMed  CAS  Google Scholar 

  42. Sols A, Crane RK (1954) Substrate specificity of brain hexokinase. J Biol Chem 210:581–595

    PubMed  CAS  Google Scholar 

  43. Fahien LA (1966) A study of the reaction of glyceraldehyde with glyceraldehyde 3-phosphate dehydrogenase. J Biol Chem 241:4115–4123

    PubMed  CAS  Google Scholar 

  44. Krimsky I, Racker E (1963) Separation of oxidative from phosphorylative activity by proteolysis of glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 2:512–518

    Article  PubMed  CAS  Google Scholar 

  45. Velick SF, Hayes JE Jr (1953) Phosphate binding and the glyceraldehyde-3-phosphate dehydrogenase reaction. J Biol Chem 203:545–562

    PubMed  CAS  Google Scholar 

  46. Meunier JC, Dalziel K (1978) Kinetic studies of glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. Eur J Biochem 82:483–492

    Article  PubMed  CAS  Google Scholar 

  47. Chen YH, He RQ, Liu Y et al (2000) Effect of human neuronal tau on denaturation and reactivation of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase. Biochem J 351:233–240

    Article  PubMed  CAS  Google Scholar 

  48. Nygaard AP, Sumner JB (1952) D-glyceraldehyde 3-phosphate dehydrogenase; a comparison with liver aldehyde dehydrogenase. Arch Biochem Biophys 39:119–128

    Article  PubMed  CAS  Google Scholar 

  49. Velick SF, Baggott JP, Sturtevant JM (1971) Thermodynamics of nicotinamide-adenine dinucleotide addition to the glyceraldehyde 3-phosphate dehydrogenases of yeast and of rabbit skeletal muscle. Biochemistry 10:779–786

    Article  PubMed  CAS  Google Scholar 

  50. Conway A, Koshland DE Jr (1968) Negative cooperativity in enzyme action. Biochemistry 7:4011–4023

    Article  PubMed  CAS  Google Scholar 

  51. Smith CM, Velick SF (1972) The glyceraldehyde 3-phosphate dehydrogenases of liver and muscle. J Biol Chem 247:273–284

    PubMed  CAS  Google Scholar 

  52. Swearengin TA, Fibuch EE, Seidler NW (2006) Sevoflurane modulates the activity of glyceraldehyde 3-phosphate dehydrogenase. J Enzyme Inhib Med Chem 21:575–579

    Article  PubMed  CAS  Google Scholar 

  53. Hohorst HJ, Reim M, Bartels H (1962) Studies on the creatine kinase equilibrium in muscle and the significance of ATP and ADP levels. Biochem Biophys Res Commun 7:142–146

    Article  PubMed  CAS  Google Scholar 

  54. Hohorst HL, Reim M, Bartels H (1962) Equilibria of two-partner reactions of energy supplying metabolism in muscle. Biochem Biophys Res Commun 7:137–141

    Article  PubMed  CAS  Google Scholar 

  55. Oguchi M, Gerth E, Fitzgerald B et al (1973) Regulation of glyceraldehyde 3-phosphate dehydrogenase by phosphocreatine and adenosine triphosphate. IV. Factors affecting in vivo control of enzymatic activity. J Biol Chem 248:5571–5576

    PubMed  CAS  Google Scholar 

  56. Lowry OH, Passonneau JV, Hasselberger FX et al (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30

    PubMed  CAS  Google Scholar 

  57. Lowry OH, Passonneau JV (1964) The relationships between substrates and enzymes of glycolysis in brain. J Biol Chem 239:31–42

    PubMed  CAS  Google Scholar 

  58. Portera-Cailliau C, Weimer RM, De Paola V et al (2005) Diverse modes of axon elaboration in the developing neocortex. PLoS Biol 3:e272

    Article  PubMed  Google Scholar 

  59. (2005) Creating a window into the developing brain: observing axon growth in live mice. PLoS Biol 3:e301. Accessed 1 July 2011

    Google Scholar 

  60. Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer's disease. Ann N Y Acad Sci 1147:180–195

    Article  PubMed  CAS  Google Scholar 

  61. Li Y, Nowotny P, Holmans P et al (2004) Association of late-onset Alzheimer’s disease with genetic variation in multiple members of the GAPD gene family. Proc Natl Acad Sci USA 101:15688–15693

    Article  PubMed  CAS  Google Scholar 

  62. Yun M, Park CG, Kim JY et al (2000) Structural analysis of glyceraldehydes 3-phosphate dehydrogenase from Escherichia coli: direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry 39:10702–10710

    Article  PubMed  CAS  Google Scholar 

  63. Skarzynski T, Moody PC, Wonacott AJ (1987) Structure of holo-glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution. J Mol Biol 193:171–187

    Article  PubMed  CAS  Google Scholar 

  64. Yamada K, Hara N, Shibata T et al (2006) The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Biochem 352:282–285

    Article  PubMed  CAS  Google Scholar 

  65. Yang H, Yang T, Baur JA et al (2007) Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130:1095–1107

    Article  PubMed  CAS  Google Scholar 

  66. Fitzgerald C, Swearengin TA, Yeargans G (1999) Non-enzymatic glycosylation (or glycation) and inhibition of the pig heart cytosolic aspartate aminotransferase by glyceraldehyde 3-phosphate. J Enzyme Inhib 15:79–89

    PubMed  CAS  Google Scholar 

  67. Rossman M, Liljas A, Branden C et al (1975) Evolutionary and structural relationship among dehydrogenases. In: Boyer PD (ed) The enzymes, vol 11. Academic, Orlando

    Google Scholar 

  68. Adams MJ, Buehner M, Chandrasekhar K et al (1973) Structure-function relationships in lactate dehydrogenase. Proc Natl Acad Sci USA 70:1968–1972

    Article  PubMed  CAS  Google Scholar 

  69. Webb LE, Hill EJ, Banaszak LJ (1973) Conformation of nicotinamide adenine dinucleotide bound to cytoplasmic malate dehydrogenase. Biochemistry 12:5101–5109

    Article  PubMed  CAS  Google Scholar 

  70. Brändén CI, Eklund H, Nordström B et al (1973) Structure of liver alcohol dehydrogenase at 2.9-angstrom resolution. Proc Natl Acad Sci USA 70:2439–2442

    Article  PubMed  Google Scholar 

  71. Buehner M, Ford GC, Moras D et al (1973) D-glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc Natl Acad Sci USA 70:3052–3054

    Article  PubMed  CAS  Google Scholar 

  72. Nagy E, Henics T, Eckert M et al (2000) Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275:253–260

    Article  PubMed  CAS  Google Scholar 

  73. Mygind T, Zeuthen Søgaard I, Melkova R et al (2000) Cloning, sequencing and variability analysis of the gap gene from mycoplasma hominis. FEMS Microbiol Lett 183:15–21

    Article  PubMed  CAS  Google Scholar 

  74. Pancholi V, Fischetti VA (1992) A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426

    Article  PubMed  CAS  Google Scholar 

  75. Suzuki K, Imahori K (1973) Glyceraldehyde 3-phosphate dehydrogenase of Bacillus stearothermophilus. Kinetics and physicochemical studies. J Biochem 74:955–970

    PubMed  CAS  Google Scholar 

  76. Tsai IH, Murthy SN, Steck TL (1982) Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 257:1438–1442

    PubMed  CAS  Google Scholar 

  77. Jia B, le Linh T, Lee S et al (2011) Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles 15:337–346

    Article  PubMed  CAS  Google Scholar 

  78. Branlant G, Branlant C (1985) Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+ -binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 150:61–66

    Article  PubMed  CAS  Google Scholar 

  79. Nelson K, Whittam TS, Selander RK (1991) Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc Natl Acad Sci USA 88:6667–6671

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seidler, N.W. (2013). GAPDH and Intermediary Metabolism. In: GAPDH: Biological Properties and Diversity. Advances in Experimental Medicine and Biology, vol 985. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4716-6_2

Download citation

Publish with us

Policies and ethics