Skip to main content

Tumor-Localized Insult Delivered by Photodynamic Therapy and the Breakdown of Tumor Immunotolerance

  • Chapter
  • First Online:
Tumor Ablation

Part of the book series: The Tumor Microenvironment ((TTME,volume 5))

Abstract

Photodynamic therapy (PDT) is a clinically established modality for the treatment of cancerous and other diseased tissue by localized activation of a photoreactive drug with light to generate cytotoxic reactive oxygen species in targeted lesions. The nature of insult inflicted on tissue by PDT classifies it with cancer therapies including hyperthermia, cryoablation, and electric field ablation, which produce a prompt trauma at the treated site and rapid dramatic changes in tumor microenvironment. This type of insult (regardless that it is induced in the tumor) is sensed as a threat to tissue integrity and homeostasis at the affected site, and provokes canonical responses evolved for dealing with localized injury. Thus the principal protective effector process engaged by the host following tumor PDT is a strong acute inflammatory reaction tasked with isolating the affected area, neutralizing focal source of danger by eliminating injured cells and debris, and securing local healing with the restoration of tissue function. The key event in this response, removal of dead and dying cancer cells, has a critical influence on the subsequent process of the resolution of inflammatory reaction and healing. Even more importantly for therapy outcome, the presence of an overwhelming number of dead cancer cells can overcome the capacity of sequestered professional phagocytes to remove cellular corpses fast enough to avoid breaking immune tolerance and can lead to the development of adaptive immune response against PDT-treated tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. von Tappeiner H (1909) Die photodynamische Erscheinung (Sensibilisierung durch fluoreszierende Stoffe). Monatsschr Kinderheilkd 8:698–741

    Google Scholar 

  2. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG (1975) Photodynamic therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 55:115–121

    PubMed  CAS  Google Scholar 

  3. Weishaupt KR, Gomer CJ, Dougherty TJ (1976) Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor. Cancer Res 36:2326–2329

    PubMed  CAS  Google Scholar 

  4. Kelly JF, Snell ME (1976) Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol 115:150–151

    PubMed  CAS  Google Scholar 

  5. Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittelman A (1978) Photoradiation therapy for the treatment of malignant tumors. Cancer Res 38:2628–2635

    PubMed  CAS  Google Scholar 

  6. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer; an update. CA Cancer J Clin 61:250–281

    Article  PubMed  Google Scholar 

  7. Hunag Z (2005) A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 4:283–294

    Google Scholar 

  8. Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancer Oncol 5:497–508

    Article  CAS  Google Scholar 

  9. Palumbo G (2007) Photodynamic therapy and cancer: a brief sightseeing tour. Expert Opin Drug Deliv 4:131–148

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert A, Baggott J (1991) Molecular photophysics. In: Gilbert A (ed) Essentials of molecular photochemistry, CRC , Boca Raton, pp 91–144

    Google Scholar 

  11. Gomer CJ, Razum NJ (1984) Acute skin response in albino mice following porphyrin photosensitization under oxic and anoxic conditions. Photochem Photobiol 40:435–439

    Article  PubMed  CAS  Google Scholar 

  12. Feix JB, Bachowski GJ, Girotti AW (1991) Photodynamic action of merocyanine 540 on erythrocyte membranes: structural perturbation of lipid and protein constituents. Biochim Biophys Acta 1075:28–35

    Article  PubMed  CAS  Google Scholar 

  13. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905

    Article  PubMed  CAS  Google Scholar 

  14. Kessel D, Reiners JJ Jr (2007) Apoptosis and autophagy after mitochondrial or endoplasmic reticulum photodamage. Photochem Photobiol 83:1024–1028

    Article  PubMed  CAS  Google Scholar 

  15. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157

    Article  PubMed  CAS  Google Scholar 

  16. Fingar VH (1996) Vascular effects of photodynamic therapy. J Clin Laser Med Surg 14:323–328

    PubMed  CAS  Google Scholar 

  17. Korbelik M (2006) PDT-associated host response and its role in the therapy outcome. Lasers Surg Med 38:500–508

    Article  PubMed  Google Scholar 

  18. Korbelik M (2008) PDT and inflammation. In: Hamblin MR, Mroz P (eds) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Boston, pp 255–266

    Google Scholar 

  19. Garg AD, Krysko DV, Vandenbeele P, Agostinis P (2011) DAMPs and PDT-mediated photo-oxidative stress; exploring the unknown. Photochem Photobiol Sci 10:670–680

    Article  PubMed  CAS  Google Scholar 

  20. Korbelik M, Merchant S (2011) Involvement of damage-associated molecular patterns in tumor response to photodynamic therapy: surface expression of calreticulin and high-mobility group box-1 release. Cancer Immunol Immunother 60:1431–1437

    Article  PubMed  CAS  Google Scholar 

  21. Korbelik M, Zhang W, Separovic D (2012) Monitoring ceramide and sphingosine-1-phosphate levels in cancer cells and macrophages from tumors treated by photodynamic therapy. Photochem Photobiol Sci 11:779–784

    Google Scholar 

  22. Srikrishna G, Freeza HH (2009) Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11:615–628

    PubMed  CAS  Google Scholar 

  23. Garg AD, Nowis D, Golab J, Vandenbeele P, Krysko DV, Agostinis P (2010) Immunogenic cell death, DAMPs, and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 1805:53–71

    PubMed  CAS  Google Scholar 

  24. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  PubMed  CAS  Google Scholar 

  25. Krosl G, Korbelik M, Dougherty GJ (1995) Induction of immune cell infiltration into murine SCCVII tumor by photofrin-based photodynamic therapy. Br J Cancer 71:549–555

    Article  PubMed  CAS  Google Scholar 

  26. Sun J, Cecic I, Parkins CS, Korbelik M (2002) Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumors. Photochem Photobiol Sci 1:690–695

    Article  PubMed  CAS  Google Scholar 

  27. Korbelik M, Cecic I (2003) Mechanism of tumor destruction by photodynamic therapy. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4, American Scientific Publishers, Stevenson Ranch, pp 39–77

    Google Scholar 

  28. Gollnick SO, Evans SS, Bauman H, Owczarczak B, Maier P, Vaughan L, Wang WC, Unger E, Henderson BW (2003) Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer 88:1772–1779

    Article  PubMed  CAS  Google Scholar 

  29. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumor immunity. Nat Rev Cancer 6:535–545

    Article  PubMed  CAS  Google Scholar 

  30. Krysko DV, D’Herde K, Vandenbeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726

    Article  PubMed  Google Scholar 

  31. deChatelineau AM, Henson PM (2003) The final step in programmed cell death: phagocytes carry apoptotic cells to the grave. Essays Biochem 39:105–117

    Google Scholar 

  32. Peter C, Wesselborg S, Herrmann M, Lauber K (2010) Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 15:1008–1028

    Article  Google Scholar 

  33. Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35:445–455

    Article  PubMed  CAS  Google Scholar 

  34. Majai G, Petrovski G, Fesüs L (2006) Inflammation and the apopto-phagocytic system. Immunol Lett 104:94–101

    Article  PubMed  CAS  Google Scholar 

  35. Henson PM (2005) Dampening inflammation. Nat. Immunology 6:1179–1181

    Article  CAS  Google Scholar 

  36. Golpon HA, Fadok VA, Yaraseviciene-Stewart L, Scerbavicius R, Sauer C, Welte T, Henson PM, Voekel NF (2004) Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 18:1716–1718

    PubMed  CAS  Google Scholar 

  37. Gollnick SO, Liu X, Owczarczak B, Musser DA, Henderson BW (1997) Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo. Cancer Res 57:3904–3909

    PubMed  CAS  Google Scholar 

  38. Gomer CJ, Ferrario A, Luna M, Rucker N, Wong S (2006) Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg Med 38:516–521

    Article  PubMed  Google Scholar 

  39. Xiao YQ, Malcolm K, Worthen GS, Gardai S, Schiemann WP, Fadok VA, Bratton DL, Henson PM (2002) Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-β. J Biol Chem 277:14884–14893

    Article  PubMed  CAS  Google Scholar 

  40. Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-kappa B and preservation of I kappa B alpha by interleukin-10 and interleukin-13. J Clin Invest 100:2443–2448

    Article  PubMed  CAS  Google Scholar 

  41. Shi Y, Massague J (2003) Mechanisms of TGF-β signaling from cell membrane to nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  42. Ferrario A, Rucker N, Wong S, Luna M, Gomer CJ (2007) Survivin, a member of the Inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res 67:4989–4995

    Article  PubMed  CAS  Google Scholar 

  43. Ferrario A, Fisher AM, Rucker N, Gomer CJ (2005) Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors. Cancer Res 65:9473–9478

    Article  PubMed  CAS  Google Scholar 

  44. Makowski M, Grzela T, Nidrla J, Azarczyk M, Mroz P, Kopee M, Nowis D, Mrowka P, Wasik M, Jakobisiak M, Golab J (2003) Inhibitor of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice. Clin Cancer Res 9:5417–5422

    PubMed  CAS  Google Scholar 

  45. Ferrario A, Gomer CJ (2006) Avastin enhances photodynamic therapy treatment of Kaposi’s sarcoma in a mouse tumor model. J Environ Path Tox Oncol 25:251–259

    Article  CAS  Google Scholar 

  46. Ferrario A Chantrain CF, von Tiehl K, Buckley S, Rucker N, Shalinsky DR, Shimada H, DeClerck YA, Gomer CJ (2004) The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model. Cancer Res 64:2328–2332

    Article  PubMed  CAS  Google Scholar 

  47. Merchant S, Huang N, Korbelik M (2010) Expression of complement and pentraxin proteins in acute phase response elicited by tumor photodynamic therapy: The engagement of adrenal hormones. Int Immunopharmacol 10:1595–1601

    Article  PubMed  CAS  Google Scholar 

  48. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454

    Article  PubMed  CAS  Google Scholar 

  49. Korbelik M, Cecic I, Merchant S, Sun J (2008) Acute phase response induction by cancer treatment with photodynamic therapy. Int J Cancer 122:1411–1417

    Article  PubMed  CAS  Google Scholar 

  50. Merchant S, Sun J, Korbelik M (2011) Heat shock protein 70 is acute phase reactant: response elicited by tumor photodynamic therapy. Cell Stress Chaperones 16:153–162

    Article  PubMed  CAS  Google Scholar 

  51. Gallowitsch-Puerta M, Pavlov VA (2007) Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 80:2325–2329

    Article  PubMed  CAS  Google Scholar 

  52. Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428

    Article  PubMed  CAS  Google Scholar 

  53. Yeager MP, Guyre PM, Munck AU (2004) Glucocorticoid regulation of the inflammatory response to injury. Acta Anaestesiol Scand 48:799–813

    Article  CAS  Google Scholar 

  54. Yamamoto N, Ngwenya BZ (1987) Activation of mouse peritoneal macrophages by lysophospholipids and ether derivatives of neutral lipids and phospholipids. Cancer Res 47:2008–2013

    PubMed  CAS  Google Scholar 

  55. Korbelik M (2011) Cancer vaccines generated by photodynamic therapy. Photochem Photobiol Sci 10:664–669

    Article  PubMed  CAS  Google Scholar 

  56. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumor immunity. Nat Rev Cancer 6:535–545

    Article  PubMed  CAS  Google Scholar 

  57. Korbelik M, Dougherty GJ (1999) Photodynamic therapy-mediated immune response against subcutaneous mouse tumors. Cancer Res 59:1941–1946

    PubMed  CAS  Google Scholar 

  58. Mroz P, Szokalska A, Wu MX, Hamblin MR (2010) Photodynamic therapy of tumors can lead to development of systemic antigen-specific immune response. PLoS One 5:e15194

    Article  PubMed  CAS  Google Scholar 

  59. Castano AP, Liu Q, Hamblin MR (2006) A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy. Br J Cancer 94:391–397

    Article  PubMed  CAS  Google Scholar 

  60. Kabingu E, Oseroff AR, Wilding GE, Gollnick SO (2009) Enhanced systemic immune reactivity to a basal cell carcinoma associated antigen following photodynamic therapy. Clin Cancer Res 15:4460–4466

    Article  PubMed  CAS  Google Scholar 

  61. Korbelik M, Stott B, Sun J (2207) Photodynamic therapy-generated vaccines: relevance of tumour cell death expression. Br J Cancer 97:1381–1387

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Korbelik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Korbelik, M. (2013). Tumor-Localized Insult Delivered by Photodynamic Therapy and the Breakdown of Tumor Immunotolerance. In: Keisari, Y. (eds) Tumor Ablation. The Tumor Microenvironment, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4694-7_7

Download citation

Publish with us

Policies and ethics