Skip to main content

Rivulariaceae

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

The Rivulariaceae are treated here as all the cyanobacteria which have trichomes with a marked taper and a basal heterocyst for much of their growth cycle. Molecular sequencing of Calothrix and Rivularia shows that these are heterogeneous and this probably also applies to Dichothrix and Gloeotrichia. The unispecific Isactis has received little study, but is morphologically close to some Calothrix. These should all be treated as form-genera for ecological descriptive purposes until more sequencing studies have been made. Sacconema and Gardnerula are not considered distinct enough to be treated as distinct genera. Colony formation occurs by aggregation of hormogonia and this may lead to the inclusion of more than one genotype.

The group as a whole occurs in environments with highly variable P concentrations, usually short periods of relatively high ambient P followed by much longer periods of low P; a few possible exceptions are discussed. Typically organic P exceeds inorganic P and the Rivulariaceae as a whole are especially efficient at using organic phosphates. N2 fixation in Rivulariaceae is highest during the period of high P. In the case of Gloeotrichia echinulata, which sometimes forms blooms in lakes, P acquisition takes place mainly while the organism is growing near the sediments. Its competitive success is favoured by a combination of P-rich sediments and relatively low P concentrations in the water.

Long colourless multicellular hairs are formed by many species, including all those with distinct hemispherical and spherical colonies. The hairs not only enhance the surface area for phosphatase activities, but also aid P acquisition from environments where the ambient P concentration is mostly low, but with occasional much higher pulses. Although most phosphatase activities take place at the cell surface, some activity often occurs in sheaths and probably also inside the cytoplasmic membrane of older hair cells, suggesting that organic phosphates can sometimes pass through the membrane.

Sufficient is known about the relationship between morphology and the environment in the Rivulariaceae to make them excellent environmental indicators. Many of the morphological characters used for classical taxonomic descriptions are expressed only when the organisms are P-limited, but some culture collections and many experimental studies have used media with very high P concentrations, making past interpretation of results doubtful, if not wrong.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Ikeda T, Yanada R, Ishikura M (2011) Concise total synthesis of calothrixins A and B. Org Lett 13(13):3356–3359

    Article  PubMed  CAS  Google Scholar 

  • Aboal M, Puig MA (2009) Microcystin production in Rivularia colonies of calcareous streams from Mediterranean Spanish basins. Algol Stud 130:39–52

    Article  CAS  Google Scholar 

  • Aboal M, Puig MA, Rios H, López-Jiménez E (2000) Relationship between macroinvertebrate diversity and toxicity of cyanophyceae (Cyanobacteria) in some streams from eastern Spain. Verh Int Verein Limnol 27:555–559

    Google Scholar 

  • Aboal M, Puig MA, Mateo P, Perona E (2002) Implications of cyanophyte toxicity on biological monitoring of calcareous streams in north-east Spain. J Appl Phycol 14:49–56

    Article  Google Scholar 

  • Aboal M, Puig MA, Asencio AD (2005) Production of microcystins in calcareous Mediterranean streams: the Alharabe River, Segura River basin in south-east Spain. J Appl Phycol 17:231–243

    Article  CAS  Google Scholar 

  • Adamec F, Kaftan D, Nedbal L (2005) Stress-induced filament fragmentation of Calothrix elenkinii (Cyanobacteria) is facilitated by death of high-fluorescence cells. J Phycol 41:835–839

    Article  Google Scholar 

  • Adams DG (2000) Symbiotic interactions. In: Whitton B, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 523–561, 668 pp

    Google Scholar 

  • Ahmadjian V (1967) A guide to the algae occurring in lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6:127–160

    Article  CAS  Google Scholar 

  • Al-Mousawi AHA (1984) Biological studies on algae in ricefield soil from the Iraqi marshes. Ph.D. thesis, University of Durham, Durham

    Google Scholar 

  • Al-Mousawi AHA, Whitton BA (1983) Influence of environmental factors on algae in rice-field soil from the Iraqi marshes. Arab J Gulf Res 1:237–253

    Google Scholar 

  • Aziz A (1985) Blue-green algal nitrogen fixation associated with deepwater rice in Bangladesh. Ph D thesis, University of Durham, Durham

    Google Scholar 

  • Aziz A, Whitton BA (1988) Influence of light flux on nitrogenase activity of the deepwater rice-field cyanobacterium (blue-green alga) Gloeotrichia pisum in field and laboratory. Microbios 53:7–19

    CAS  Google Scholar 

  • Aziz A, Whitton BA (1989) Morphogenesis of blue-green algae. II. Hair differentiation in Gloeotrichia pisum. Bangladesh J Bot 16:69–81

    Google Scholar 

  • Banerjee M, John J (2005) Phosphatase activity of non-hair forming cyanobacterium Rivularia and its role in phosphorus dynamics in deepwater rice-fields. Appl Ecol Environ Res 3(1):55–60

    Google Scholar 

  • Barbiero RP (1993) A contribution to the life history of the planktonic cyanophyte, Gloeotrichia echinulata. Arch Hydrobiol 127:87–100

    Google Scholar 

  • Barbiero RP, Welch EB (1992) Contribution of benthic blue-green algal recruitment to lake populations and phosphorus recruitment. Freshw Biol 27:249–260

    Article  Google Scholar 

  • Bary D (1863) Beitrag zur Kenntnis der Nostocaceen, insbesondere Rivulariaceen. Flora (Jena) 46:553–560

    Google Scholar 

  • Batten DL, Van Geel B (1985) Celyphus rallus, probably early Cretaceous rivulariacean blue-green alga. Rev Palaeobot Palynol 44:233–241

    Article  Google Scholar 

  • Bauersachs T, Compaoré J, Hopmans EC, Stal LJ, Schouten S, Damsté JSS (2009) Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70:2034–2039

    Article  PubMed  CAS  Google Scholar 

  • Benedetti-Cecchi L, Vaselli S, Maggi E, Bertocci I (2005) Interactive effects of spatial variance and mean intensity of grazing on algal cover in rock pools. Ecology 86:2212–2222

    Article  Google Scholar 

  • Beraldi-Campesi H, Cevallos-Ferriz SRS, Chacón-Baca E (2004) Microfossil algae associated with Cretaceous stromatolites in the Tarahumara Formation, Sonora, Mexico. Cretac Res 25:249–265

    Article  Google Scholar 

  • Bernardo PH, Chai CLL, Heath GA, Mahon PJ, Smith GD, Waring P, Wilkes BA (2004) Synthesis, electrochemistry, and bioactivity of the cyanobacterial calothrixins and related quinones. J Med Chem 47:4958–4963

    Article  PubMed  CAS  Google Scholar 

  • Bernardo PH, Chai CLL, Le Guen M, Smith GD, Waring P (2007) Structure-activity delineation of quinones related to the biologically active calothrixin B. Bioorg Med Chem Lett 17(1):82–85

    Article  PubMed  CAS  Google Scholar 

  • Berrendero E, Perona E, Mateo P (2008) Genetic and morpholo­gical characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 58:447–460

    Article  PubMed  CAS  Google Scholar 

  • Berrendero E, Perona E, Mateo P (2011) Phenotypic variability and phylogenetic relationships of Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 61(12):3039–3051

    Article  PubMed  Google Scholar 

  • Böcher TW (1946) Dichothrix gelatinosa sp. n., its structure and resting organs. K Danske Vidensk Selsk Skr IV(4):1–15

    Google Scholar 

  • Bornet JBE, Flahault CGM (1886) Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France. Ann Sci Nat Bot Sér 7(3):323–381

    Google Scholar 

  • Campbell D, Houmard J, Tandeau de Marsac N (1993) Electron transport regulates cellular differentiation in the filamentous cyano­bacterium Calothrix. Plant Cell 5(4):451–463

    PubMed  CAS  Google Scholar 

  • Campos IFP, Senna PAC (1988) Nostocophyceae (Cyanophyceae) de Lagao Bonita, Distrito Federal, Brasil. Parto 1. Acta Bot Bras 2(1–2):7–30

    Article  Google Scholar 

  • Capone DG, Taylor BF (1977) Nitrogen fixation (acetylene reduction) in the phyllosphere of Thalassia testidinum. Mar Biol 40(1):19–28

    Article  CAS  Google Scholar 

  • Carey CC, Rengefors K (2010) The cyanobacterium Gloeotrichia echinulata stimulates the growth of other phytoplankton. J Plankton Res 32:1349–1354

    Article  Google Scholar 

  • Carey CC, Haney JF, Cottingham KL (2007) First report of microcystin-LR in the cyanobacterium Gloeotrichia echinulata. Environ Toxicol 22:337–339

    Article  PubMed  CAS  Google Scholar 

  • Carey CC, Weathers KC, Cottingham KL (2008) Gloeotrichia echinulata blooms in an oligotrophic lake helpful insights from eutrophic lakes. J Plankton Res 30:893–904

    Article  CAS  Google Scholar 

  • Carey CC, Weathers KC, Cottingham KL (2009) Increases in phosphorus at the sediment-water interface may influence the initiation of cyanobacterial blooms in an oligotrophic lake. Verh Int Verein Limnol 30(8):1185–1188

    CAS  Google Scholar 

  • Carey CC, Cottingham KL, Weathers KC, Brentrup JA, Ruppertsberger NM, Ewing HA, Hairston NG (2011) Cyanobacteria are not all bad: Gloeotrichia echinulata may stimulate plankton food webs in nutrient-limited freshwater ecosystems. In: Abstract, 96th Ecological Society of America annual meeting, Austin, TX, 7–12 Aug 2011

    Google Scholar 

  • Carpenter EJ, Cox JL (1974) Production of pelagic Sargassum and a blue-green epiphyte in the western Sargasso Sea. Limnol Oceanogr 19:429–436

    Article  CAS  Google Scholar 

  • Casanova J (1982) Morphologie et biolithogenèse des barrages de travertins. In: Nicod J (ed) Formations Carbonatées -Externes, Tufs et Travertins. Institut de géographie, Aix-en-Provence, pp 45–54

    Google Scholar 

  • Casanova J (1984) Genèse des carbonates d’un travertin pléistocène: interpretation paleoecologique du sondage Peyr I (Comprégnac, Aveyron). Geobios 17:219–229

    Google Scholar 

  • Castenholz RW (1973) Ecology of the blue-green algae in hot springs. In: Carr NG, Whitton BA (eds) The biology of the blue-green algae. Blackwell, Oxford, pp 379–414, 655 pp

    Google Scholar 

  • Castenholz RW (1989) Rivulariaceae. In: Bergey’s manual of systematic bacteriology 3. Williams & Wilkins, Baltimore, pp 1790–1793

    Google Scholar 

  • Cattaneo A (1983) Grazing on epiphytes. Limnol Oceanogr 28:124–132

    Article  Google Scholar 

  • Caudwell C, Lang J, Pascal A (1997) Étude expérimentale de la lamination stromatolithes à Rivularia haematites mat en climat tempéré: édification des lamines microcritiques. C R Acad Sci Paris 324(IIa):883–890

    Google Scholar 

  • Caudwell C, Lang J, Pascal A (2001) Lamination of swampy-rivulets Rivularia haematites stromatolites in a temperate climate. Sediment Geol 143:125–147 (+ 148: 451)

    Article  Google Scholar 

  • Chang TP (1979a) Growth and acetylene reduction by Gloeotrichia echinulata (Smith) Richter in axenic culture. Br Phycol J 14:207–210

    Article  Google Scholar 

  • Chang TP (1979b) Zur Morphologie von Gloeotrichia echinulata (Smith) Richter in axenischer Kultur. Nova Hedwigia Kryptogamenk 21:265–283

    Google Scholar 

  • Chang T-P (1983) Interaction of water-blooming cyanophyte Gloeotri­chia echinulata and its endophytic blue-green alga Pseudanabaena catenata. Arch Hydrobiol 97:320–328

    Google Scholar 

  • Chang T-P, Blauw TS (1980) Nitrogen fixing capacity of two colonial types of Gloeotrichia echinulata and its endophytic blue-green alga Pseudanabaena catenata. Arch Hydrobiol 89:382–386

    Google Scholar 

  • Chen X, Smith GD, Waring P (2003) Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J Appl Phycol 15:269–277

    Article  CAS  Google Scholar 

  • Claassen MI (1973) Freshwater algae of Southern Africa. I. Notes on Gloeotrichia ghosei R.N.Singh. Br Phycol J 8:325–331

    Article  Google Scholar 

  • Cuzman OA, Stefano Ventura S, Sili C, Mascalchi C, Tulio Turchetti T, D’Acqui LP, Tiano P (2010) Biodiversity of phototrophic biofilms dwelling on monumental fountains. Microb Ecol 60:81–95

    Article  PubMed  CAS  Google Scholar 

  • Darley J (1967) Sur quelques résultats de la culture en laboratoire de deux espèces de Calothrix Agardh (Myxophycées-Rivulariacées). C R Acad Sci Ser 264D:1013–1015

    Google Scholar 

  • de Toni G (1936) Noterelle di Nomencl. Algological 8:5

    Google Scholar 

  • Desikachary TV (1946) Germination of the heterocyst in two members of the Rivulariaceae, Gloeotrichia raciboskii Wolosz. and Rivularia mangini Frémy. J Indian Bot Soc 25:11–17

    Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi, 686 pp

    Google Scholar 

  • Dillon JG, Castenholz RW (2003) The synthesis of the UV-screening pigment, scytonemin, and photosynthetic performance in isolates from closely related natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5(6):484–491

    Article  PubMed  CAS  Google Scholar 

  • Dillon JG, Miller SR, Castenholz RW (2003) UV-acclimation responses in natural populations of cyanobacteria (Calothrix sp.). Environ Microbiol 5:473–483

    Article  PubMed  Google Scholar 

  • Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J Appl Phycol 12:409–416

    Article  CAS  Google Scholar 

  • Doan NT, Stewart PR, Smith GD (2001) Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-epi-hapalindole E isonitrile and calothrixin A. FEMS Microbiol Lett 196:135–139

    Article  PubMed  CAS  Google Scholar 

  • Domínguez-Escobar J, Beltrán Y, Bergman B, Díez B, Ininbergs K, Souza V, Falcón LI (2011) Phylogenetic and molecular clock inferences of cyanobacterial strains within Rivulariaceae from distant environments. FEMS Microbiol Lett 316:90–99

    Google Scholar 

  • Donaldson A, Whitton BA (1977) Algal flora of freshwater habitats on Aldabra. Atoll Res Bull 215:1–26

    Article  Google Scholar 

  • Douglas D, Peat A, Whitton BA, Wood P (1986) Influence of iron status on structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47:155–165

    CAS  Google Scholar 

  • Dragastan G, Golubic S, Richter DK (1996) Rivularia haematites: a case study of the recent versus fossil morphological. Taxonomical considerations. Rev Española Micropaleontol 28:43–73

    Google Scholar 

  • Dromgoole FI, Silvester WB, Hicks BJ (1978) Nitrogenase associated with Codium species from New Zealand. N Z J Mar Freshw Res 12:17–22

    Article  CAS  Google Scholar 

  • Duong TP, Tiedje JM (1985) Nitrogen fixation by naturally occurring duckweed-cyanobacterial associations. Can J Microbiol 31:327–330

    Article  CAS  Google Scholar 

  • Edmondson WT (1938) Three new species of Rotatoria. Trans Am Microsc Soc 57:153–157

    Article  Google Scholar 

  • Ehrenreich IM, Waterbury JB, Webb EA (2005) Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol 71(11):7401–7413

    Article  PubMed  CAS  Google Scholar 

  • Eiler A, Olsson JA, Bertilsson S (2006) Diurnal variations in the auto- and heterotrophic activity of cyanobacterial phycospheres (Gloeotrichia echinulata) and the identify of attached bacteria. Freshw Biol 51:298–311

    Article  CAS  Google Scholar 

  • Falcón LI, Magall Falcón S, Castillo A (2010) Dating the cyanobacterial ancestor of the chloroplast. ISME J 4:777–783

    Article  PubMed  CAS  Google Scholar 

  • Fan KC (1956) Revision of Calothrix Ag. Rev Algol N.S. 2(3):154–178

    Google Scholar 

  • Fey SB, Mayer ZA, Davis SC, Cottingham KL (2010) Zooplankton grazing of Gloeotrichia echinulata and associated life history consequences. J Plankton Res 9:1337–1347

    Article  CAS  Google Scholar 

  • Fogg GE (1969) The physiology of an algal nuisance. Proc R Soc Lond B 173:175–189

    Article  Google Scholar 

  • Forsell L, Pettersson K (1995) On the seasonal migration of the cyano­bacterium Gloeotrichia echinulata in Lake Erken, Sweden, and is influence on the pelagic population. Mar Freshw Res 46:287–293

    Google Scholar 

  • Foster RA, Zehr JP (2006) Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences. Environ Microbiol 8:1913–1925

    Article  PubMed  CAS  Google Scholar 

  • Foster RA, Capone DG, Carpenter EJ, Mahaffey C, Subramaniam A, Zehr JP (2007) Influence of the Amazon River Plume on distributions of free-living and symbiotic cyanobacteria in the Western Tropical North Atlantic Ocean. Limnol Oceanogr 52:517–532

    Article  CAS  Google Scholar 

  • Foster RA, Subramaniam A, Zehr JP (2009) Distribution and activity of diazotrophs in the Eastern Equatorial Atlantic. Environ Microbiol 11:741–750

    Article  PubMed  CAS  Google Scholar 

  • Foster RA, Goebel NL, Zehr JP (2010) Isolation of Calothrix rhizosoleniae (cyanobacteria) strain sc01 from Chaetoceros (Bacillariophyta) spp. diatoms of the subtropical North Pacific Ocean. J Phycol 46:128–1037

    Article  CAS  Google Scholar 

  • Foster RA, Kuypers MMM, Vagner T, Paerl RW, Muzat N, Zehr JP (2011) Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J 5:1484–1493. doi:10.1038/ismej.2011.26

    Article  PubMed  CAS  Google Scholar 

  • Friedmann I (1956) Ãœber der Blaualga Gardnerula corymbosa (Harvey) J. De Toni und ihr Vorkommen im Mittelmeer. Öst Bot Z 103:336–341

    Article  Google Scholar 

  • Fritsch FE (1907a) The subaerial and freshwater algal flora of the Tropics. Ann Bot 21:235–275

    Google Scholar 

  • Fritsch FE (1907b) A general consideration of the freshwater algae and subaerial algae of Ceylon. Proc R Soc Lond B 79:197–254

    Article  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst’s Kryptogamen-flora, vol 14. Akademische Verlagsgesellschaft, Leipzig, 1196 pp

    Google Scholar 

  • Golden SS (1995) Light-responsive gene expression in cyanobacteria. J Bacteriol 177:1651–1654

    PubMed  CAS  Google Scholar 

  • Golubic S, Campbell SE (1981) Biogenically formed aragonite concretions in marine Rivularia. In: Monty C (ed) Phanerozoic stromatolites. Springer, Berlin/Heidelberg, pp 209–229

    Chapter  Google Scholar 

  • Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek, near Lancaster, Pennsylvania. Verh Int Verein Limnol 19:2315–2323

    Google Scholar 

  • Gomont M(A) (1895) Note sur un Calothrix sporifère (Calothrix stagnalis sp. n.). J Bot 9:1–6

    Google Scholar 

  • Gonsalves EA, Kamat ND (1960) New species of Cyanophyceae from Mysore State – 1. J Bombay Nat Hist Soc 57(2):454–456

    Google Scholar 

  • Grainger SLJ, Peat A, Tiwari DN, Whitton BA (1989) Phosphomonoes­terase activity of the cyanobacterium (blue-green alga) Calothrix parietina. Microbios 59:7–17

    PubMed  CAS  Google Scholar 

  • Gunasekera SP, Miller MW, Kwan JC, Luesch H, Paul VJ (2010) Molassamide, a depsipeptide serine protease inhibitor from the marine cyanobacterium Dichothrix utahensis. J Nat Prod 73:459–462

    Article  PubMed  CAS  Google Scholar 

  • Healey FP (1982) Phosphate. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publishers, Oxford, pp 105–124, 688 pp

    Google Scholar 

  • Henssen A (1969) Three non-marine species of the genus Lichina. Lichenologist 4:88–98

    Article  Google Scholar 

  • Henssen A (1973) New or interesting cyanophytic lichens. I. Lichenologist 5:444–451

    Article  Google Scholar 

  • Heuff H, Horkan K (1984) Caragh. In: Whitton BA (ed) Ecology of European rivers. Blackwell, Oxford, pp 363–384, 644 pp

    Google Scholar 

  • Hicks BJ, Silvester WB (1985) Nitrogen fixation associated with the New Zealand mangrove (Avicennia marina (Forsk.) Vierh. var. resinifera (Forst. f.) Bakh.). Appl Environ Microbiol 49:955–959

    PubMed  CAS  Google Scholar 

  • Höckelmann C, Becher PG, von Reuss SH, Jüttner F (2009) Sesquiter­penes of the geosmin-producing cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates. Z Naturforsh 64C:49–55

    Google Scholar 

  • Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB (2005) Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles 9:325–332

    Article  PubMed  CAS  Google Scholar 

  • Hoover RB (2011) Fossils of cyanobacteria in CI1 carbonaceous meteorites. J Cosmol 13:1–39

    Google Scholar 

  • Huang TC, Grobbelaar N (1989) Isolation and characterization of endosymbiotic Calothrix. (Cyanophyceae) in Encephalartos hildebrandtii (Cycadales). Phycologia 28:464–468

    Article  Google Scholar 

  • Hübel H, Hübel M (1974) In-situ Messungen der diurnalen Stickstoff Fixierung an Mikrobenthos der OstseeKüste. Arch Hydrobiol Suppl 46:39–54

    Google Scholar 

  • Hyenstrand P, Rydin E, Gunnerhed M, Linder J, Blomqvist P (2001) Response of the cyanobacterium Gloeotrichia echinulata to iron and boron additions – an experiment from Lake Erken. Freshw Biol 46:735–741

    Article  CAS  Google Scholar 

  • Islam MR, Whitton BA (1992a) Phosphorus content and phosphatase activity of the deepwater rice-field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69:7–16

    CAS  Google Scholar 

  • Islam MR, Whitton BA (1992b) Cell composition and nitrogen fixation by the deepwater rice -field cyanobacterium (blue-green alga) Calothrix D764. Microbios 69:77–88

    CAS  Google Scholar 

  • Istvánovics V (2008) The role of biota in shaping the phosphorus cycle in lakes. Freshw Rev 1:143–174

    Google Scholar 

  • Istvánovics V, Pettersson K, Pierson D (1990) Partitioning of phosphate uptake between different size groups of planktonic microorganisms in Lake Erken. Verh Int Verein Limnol 24:231–245

    Google Scholar 

  • Istvánovics V, Pettersson K, Rodrigo MA, Pierson D, Padisák J, Colom W (1993) Gloeotrichia echinulata, a colonial cyanobacterium with a unique phosphorus uptake and life strategy. J Plankton Res 15:531–552

    Article  Google Scholar 

  • Janson S, Rai AN, Bergman B (1993) The marine lichen Lichina confinis (O. F. Müll.) C. Ag.: ultrastructure and localization of nitrogenase, glutamine synthetase, phycoerythrin and ribulose 1, 5-bisphosphate carboxylase/oxygenase in the cyanobiont. New Phytol 124:149–160

    Article  CAS  Google Scholar 

  • Johansson C (1979) Chlorophyll content and the periphytic algal vegetation in six streams in North Jämtland, Sweden, 1977. Medd Växtbiol Inst Uppsala 1979(2):1–28

    Google Scholar 

  • Jones K, Stewart WDP (1969) Nitrogen turnover in marine and brackish habitats III. The production of extracellular nitrogen by Calothrix scopulorum. J Mar Biol Assoc UK 49:475–488

    Article  CAS  Google Scholar 

  • Kann E (1982) Qualitative Veränderungen der litoralen Algenbiocönose österreichischer Seen. Arch Hydrobiol Suppl 62:440–490

    CAS  Google Scholar 

  • Karlsson I (2003) Benthic growth of Gloeotrichia echinulata cyanobacteria. Hydrobiologia 506:189–193

    Article  Google Scholar 

  • Karlsson-Elfgren I, Rydin E, Hyenstrand P, Pettersson K (2003) Recruitment and pelagic growth of Gloeotrichia echinulata in Lake Erken. J Phycol 39:1050–1056

    Article  Google Scholar 

  • Karlsson-Elfgren I, Rengefors K, Gustafson S (2004) Factors regulating recruitment from the sediment to the water column in the bloom-forming cyanobacterium Gloeotrichia echinulata. Freshw Biol 49:265–273

    Article  Google Scholar 

  • Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51

    Article  CAS  Google Scholar 

  • Katayama M, Kobayashi M, Ikeuchi M (2007) Phototropism observed in cyanobacterium Rivularia sp. Plant Cell Physiol 48:158

    Google Scholar 

  • Kenyon CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol 83:216–236

    Article  PubMed  CAS  Google Scholar 

  • Khan QA, Lu J, Hecht SM (2009) Calothrixins, a new class of human DNA topoisomerase I poisons. J Nat Prod 72(3):438–442

    Article  PubMed  CAS  Google Scholar 

  • Khoja TM, Whitton BA (1971) Heterotrophic growth of blue-green algae. Arch Mikrobiol 79:280–282

    Article  Google Scholar 

  • Khoja TM, Livingstone D, Whitton BA (1984) Ecology of a marine Rivularia population. Hydrobiologia 108:65–73

    Google Scholar 

  • Kirkby SM, Whitton BA (1976) Uses of coded data in study of Calothrix and Rivularia. Br Phycol J 11:407–416

    Article  Google Scholar 

  • Lachance M-A (1981) Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int J Syst Bacteriol 31:13–147

    Article  Google Scholar 

  • Lami R, Meslin R (1959) Sur une cyanophycée, Calothrix Chapmanii nom. nov., vivant à l’intérieur d’une Entéromorphe limicole. Bull Lab Marit Dinard 44:47–49

    Google Scholar 

  • Lange W (1974) Chelating agents and blue-green algae. Can J Microbiol 20(10):1311–1320

    Article  CAS  Google Scholar 

  • Larsen LK, Re M, Patterson GML (1994) β-carbolines from the blue-green alga Dichothrix baueriana. J Nat Products 57(3):419–421

    Article  CAS  Google Scholar 

  • Lebedeva NV, Boichenko VA, Semenova LR, Pronina NA, Stadnichuk IN (2005) Effects of glucose during photoheterotrophic growth of the cyanobacterium Calothrix sp PCC 7601 capable for chromatic adaptation. Russ J Plant Physiol 52:235–241

    Article  CAS  Google Scholar 

  • Lemmermann E (1905) Die Algenflora der Sandwich-Islen. Ergebnisse einer Reise nach dem Pacific. H. Schauinsland 1896/97. Bot Jahrbuch Systematik Pflanzengesch Pflanzengeogr 3:607–663

    Google Scholar 

  • Limaye RB, Kumaran KPN, Nair KM, Padmalal D (2010) Cyanobacteria as potential biomarkers of hydrological changes in the Late Quaternary sediments of South Kerala Sedimentary Basin, India. Quaternary Int 213:79–90

    Article  Google Scholar 

  • Liu Xinyao, Shi Miao, Liao Yonghong, Gao Yin, Zhang Zhongkai, Wen Donghui, Wu Weizhong (2006) An Chencai Feeding characteristics of an amoeba (Lobosea: Naegleria) grazing upon cyanobacteria: food selection, ingestion and digestion progress. Microb Ecol 31:315–325

    Google Scholar 

  • Livingstone D, Whitton BA (1983) Influence of phosphorus on morpho­logy of Calothrix parietina (Cyanophyta) in culture. Br Phycol J 18:29–38

    Article  Google Scholar 

  • Livingstone D, Whitton BA (1984) Water chemistry and phosphatase activity of the blue-green alga Rivularia in Upper Teesdale streams. J Ecol 72:405–421

    Article  CAS  Google Scholar 

  • Livingstone D, Khoja TM, Whitton BA (1983) Influence of phosphorus on physiology of a hair-forming blue-green alga (Calothrix parietina) from an upland stream. Phycologia 22:345–350

    Article  CAS  Google Scholar 

  • Livingstone D, Pentecost A, Whitton BA (1984) Diel variations in nitrogen and carbon dioxide fixation by the blue-green alga Rivularia in an upland stream. Phycologia 23:125–133

    Article  CAS  Google Scholar 

  • Maehr H, Smallheer JM (1984) Rivularins. Preliminary synthetic studies. Org Chem 49:1549–1553

    Article  CAS  Google Scholar 

  • Mahasneh IA, Grainger SLJ, Whitton BA (1990) Influence of salinity on hair formation and phosphatase activities of the blue-green alga (cyanobacterium) Calothrix viguieri D253. Br Phycol J 25:25–329

    Article  Google Scholar 

  • Mateo P, Douterelo I, Berrendero E, Perona E (2006) Physiological differences between two species of cyanobacteria in relation to phosphorus limitation. J Phycol 42:61–66

    Article  CAS  Google Scholar 

  • Mateo P, Berrendero E, Perona E, Loza V, Whitton BA (2010) Phosphatase activities of cyanobacteria as indicators of nutrient status in a Pyrenees river. Hydrobiologia 652:255–268

    Article  CAS  Google Scholar 

  • Maxwell TF (1974) Developmental morphology of the blue-green alga, Gloeotrichia echinulata. J Phycol 10 (Suppl):4

    Google Scholar 

  • McErlean CSP, Sperry J, Blake AJ, Moody CJ (2007) Synthesis of the calothrixins, pentacyclic indolo[3,2-j]phenanthridine alkaloids, using a biomimetic approach. Tetrahedron 63(45):10963–10970

    Article  CAS  Google Scholar 

  • Mobberley JM, Ortega MC, Foster JS (2011) Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02509.x

  • Mohamed ZA, El-Sharouny HM, Ali WSM (2006) Microcystin production in benthic mats of cyanobacteria in the Nile River and irrigation canals, Egypt. Toxicon 47:584–590

    Article  PubMed  CAS  Google Scholar 

  • Monty CLV (1967) Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Ann Soc Geol Belg Bull 96:585–624

    Google Scholar 

  • Mulec J, Kosi G, Vrhovsek D (2007) Algae promote growth of stalagmites and stalactites in karst caves (Skocjanske jame, Slovenia). Carbonates Evaporites 22:6–9

    Article  Google Scholar 

  • Müller-Stoll WR (1986) Der Cyanophyceen-Bewuchs der Furchen- oder Hirnsteine des Bodensees. Carolinea 44:51–60

    Google Scholar 

  • Myshrall KL, Mobberley JM, Green SJ, Visscher PT, Havemann SA, Reid RP, Foster JS (2010) Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8(4):337–354

    Article  PubMed  CAS  Google Scholar 

  • Norton RS, Wells RJ (1982) A series of chiral polybrominated ­biindoles from the blue-green marine algae Rivularia firma. Applications of 13C NMR spin-lattice relaxation data and 123H-1H coupling constants to structure elucidation. J Am Chem Soc 104:3628–3635

    Article  CAS  Google Scholar 

  • Obenlüneschloss J, Schneider J (1991) Ecology and calcification patterns of Rivularia (Cyanobacteria). Algol Stud 64:489–502

    Google Scholar 

  • Osa-Afiana LO, Alexander M (1981) Factors affecting predation by a microcrustacean (Cypris sp.) on nitrogen-fixing blue-green algae. Soil Biol Biochem 13:27–32

    Article  Google Scholar 

  • Pedersen M, DaSilva EJ (1973) Simple brominated phenols in the blue-green alga Calothrix brevissima West. Planta 115:83–86

    Article  CAS  Google Scholar 

  • Pentecost A (1987) Growth and calcification of the freshwater cyanobacterium Rivularia haematites. Proc R Soc Lond B 232:125–136

    Article  Google Scholar 

  • Pentecost A, Franke U (2010) Photosynthesis and calcification of the stromatolitic freshwater cyanobacterium Rivularia. Eur J Phycol 45:345–353

    Article  CAS  Google Scholar 

  • Pentecost A, Riding R (1986) Calcification in cyanobacteria. In: Leadbeater BSC, Riding R (eds) Biomineralization of lower plants and animals. Clarendon, Oxford, pp 73–90

    Google Scholar 

  • Pentecost A, Whitton BA (2000) Limestones. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 257–279, 668 pp

    Google Scholar 

  • Pereira I, Moya M, Reyes G, Kramm V (2005) A survey of heterocystous cyanobacteria in Chilean rice-fields. Gayana Bot 62(1):26–32

    Google Scholar 

  • Pettersson K (1980) Alkaline phosphatase activity and algal surplus phosphorus as phosphorus deficiency indicators in Lake Erken. Arch Hydrobiol 89:54–87

    CAS  Google Scholar 

  • Pettersson K, Istvánovics V, Pierson D (1990) Effects of vertical mixing on phytoplankton phosphorus supply during summer in Lake Erken. Verh Int Verein Limnol 24:236–241

    Google Scholar 

  • Pettersson K, Herlitz E, Istvánovics V (1993) The role of Gloeotrichia echinulata in the transfer of phosphorus from sediments to water in Lake Erken. Hydrobiologia 253:123–129

    Article  CAS  Google Scholar 

  • Phillips W (1884) The breaking of the Shropshire meres. Trans Shropshire Archaeol Nat Hist Soc 7:277–300

    Google Scholar 

  • Planavsky N, Reid RP, Lyons TW, Myshrall KL, Visscher PT (2009) Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7:566–576

    Article  PubMed  CAS  Google Scholar 

  • Potts M, Whitton BA (1977) Nitrogen fixation by blue-green algal communities in the intertidal zone of the Lagoon of Aldabra Atoll. Oecologia 27:275–283

    Article  Google Scholar 

  • Power ME, Stewart AJ, Matthews WJ (1988) Grazer control of algae in an Ozark mountain stream: effects of short-term exclusion. Ecology 69:1894–1898

    Article  Google Scholar 

  • Prasanna R, Pabby A, Saxena S, Singh PK (2004a) Modulation of pigment profiles of Calothrix elenkenii in response to environmental changes. J Plant Physiol 161:1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Prasanna R, Pabby A, Singh PK (2004b) Effect of glucose and light-dark environment on pigmentation profiles in the cyanobacterium Calothrix elenkenii. Folia Microbiol (Praha) 49:26–30

    Article  CAS  Google Scholar 

  • Querijero-Palacpac NM, Martinez MR, Boussiba S (1990) Mass cultivation of the nitrogen-fixing cyanobacterium Gloeotrichia natans, indigenous to rice-fields. J Appl Phycol 2:319–325

    Article  CAS  Google Scholar 

  • Rai AK, Pandey KD, Kashyap AK (1978) Heterocyst differentiation in Calothrix. New Phytol 81:647–651

    Article  Google Scholar 

  • Reed RH, Stewart WDP (1983) Physiological responses of Rivularia atra: osmotic adjustment to hypersaline media. New Phytol 95:595–603

    Article  CAS  Google Scholar 

  • Reyes J, Sansón M (1997) Temporal distribution and reproductive pheno­logy of the epiphytes on Cymodocea nodosa leaves in the Canary Islands. Bot Mar 40:1–6

    Article  Google Scholar 

  • Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD (1999) Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron 55(47):13513–13520

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Rippka R, Castenholz RW, Herdman M (2001a) Subsection IV.II form-genus I. Calothrix Agardh 1824. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 582–585, 721 pp

    Google Scholar 

  • Rippka R, Castenholz RW, Herdman M (2001b) Subsection IV.II form-genus II. Rivularia Agardh 1824. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 586–587, 721 pp

    Google Scholar 

  • Rippka R, Castenholz RW, Herdman M (2001c) Subsection IV. (Formerly Nostocales Castenholz 1989b sensu Rippka, Deruelles, Waterbury, Herdman and Stanier 1979) In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. vol 1, 2nd edn. Springer, New York, pp 562–599, 721 pp

    Google Scholar 

  • Roddy HJ (1915) Concretions in streams formed by the agency of blue green algae and related plants. Proc Am Phil Soc 54:246–258

    CAS  Google Scholar 

  • Rodhe W (1949) Environmental requirements of fresh-water plankton algae. Symb Bot Ups X:149

    Google Scholar 

  • Roelofs TD, Oglesby RT (1970) Ecological observations on the planktonic cyanophyte Gloeotrichia echinulata. Limnol Oceanogr 15:224–229

    Article  Google Scholar 

  • Rosenberg G, Paerl HW (1981) Nitrogen fixation by blue-green algae associated with the siphonous green seaweed Codium decorticum. Mar Biol 61:151–158

    Article  Google Scholar 

  • Rother JA, Aziz A, Hye Karim N, Whitton BA (1988) Ecology of deepwater rice-fields in Bangladesh 4. Nitrogen dixation by blue-green algal communities. Hydrobiologia 169:43–56

    Article  Google Scholar 

  • Rott E (1991) Oncoids from the summer-warm River Alz (Bavaria) – mophology and dominant cyanophytes. Algol Stud 64:469–482

    Google Scholar 

  • Ruangsomboon S, Chidthaisong A, Bunnag B, Inthorn D, Harvey NW (2006) Lead (Pb2+) removal from wastewater by the cyanobacterium Calothrix marchica. Kasetsart J (Nat Sci) 40:784–794

    CAS  Google Scholar 

  • Ruiz-Ramírez R, Espinosa-Chávez F, Martínez-Jerónimo F (2005) Growth and reproduction of Pomacea patula catemacensis Baker, 1922 (Gastropoda: Ampullariidae) when fed Calothrix sp (Cyanobacteria). J World Aquacult Soc 36:87–95

    Article  Google Scholar 

  • Sabater S (1989) Encrusting algal communities in a Mediterranean river basin. Arch Hydrobiol 114:555–573

    Google Scholar 

  • Sabater S, Guasch H, Romani A, Muñoz I (2000) Stromatolitic communities in Mediterranean streams: adaptations to a changing environment. Biodivers Conserv 9:379–392

    Article  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Stapf KRG (1978) Permian Saar-Nahe basin and recent Lake Constance (Germany): two environments of lacustrine algal carbonates. Spec Publ Int Assoc Sediment 2:83–107

    Google Scholar 

  • Schlegel I, Doan NT, de Chazal N, Smith GD (1998) Antibiotic sensitivity of cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479

    Article  Google Scholar 

  • Schneider SC, Lindstrøm E-A (2011) The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 685:143–156

    Article  CAS  Google Scholar 

  • Schwenender S (1894) Zur Wachstumgeschichte der Rivularien. Sber Preuss Akad Wissensch, Berlin, pp 951–961

    Google Scholar 

  • Shalini IM, Dhar DW, Gupta RK (2008) Phylogenetic analysis of cyanobacterial strains of genus-Calothrix by single and multiplex randomly amplified polymorphic DNA-PCR. World J Microbiol Biotechnol 24:927–935

    Article  CAS  Google Scholar 

  • Shehata FHA, Whitton BA (1981) Field and laboratory studies on blue-green algae from aquatic sites wutg high zinc levels. Verh Int Verein Limnol 21:1466–1471

    CAS  Google Scholar 

  • Sigler WV, Bachofen R, Zeyer J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627

    Article  PubMed  CAS  Google Scholar 

  • Sihvonen LM, Lyra C, Fewer DP, Rajaniemi-Wacklin P, Lehtimäki JM, Wahlsten M, Sivonen K (2007) Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiol Ecol 61:74–84

    Article  PubMed  CAS  Google Scholar 

  • Sinclair C, Whitton BA (1977a) Influence of nutrient deficiency on hair formation in the Rivulariaceae. Br Phycol J 12:297–313

    Article  Google Scholar 

  • Sinclair C, Whitton BA (1977b) Influence of nitrogen source on morphology of Rivulariaceae (Cyanophyta). J Phycol 13:335–340

    Google Scholar 

  • Singh RN, Tiwari DN (1970) Frequent heterocyst germination in the blue-green alga Gloeotrichia ghosei Dingh. J Phycol 6:172–176

    Google Scholar 

  • Skácelová O (2006) Dichothrix ledereri sp. nova, a new cyanobacterium from old coal/mining deposits, and occurrence of the genus Dichothrix (Cyanobacteria, Nostocales) in the Czech Republic. Algol Stud 121:1–21

    Article  Google Scholar 

  • Skulberg OM (2000) Microalgae as a source of bioactive molecules – experience from cyanophyte research. J Appl Phycol 12:341–348

    Article  CAS  Google Scholar 

  • Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344

    Article  CAS  Google Scholar 

  • Smith RV, Peat A (1967) Comparative structure of the gas-vacuoles of blue-green algae. Arch Mikrobiol 57:111–122

    Article  Google Scholar 

  • Snoeijs P, Murasi LK (2004) Symbiosis between diatoms and cyanobacterial colonies. Vie Milieu 54:163–170

    Google Scholar 

  • Spodniewska I (1971) The influence of experimental increase of biomass of the blue-green algae Gloeotrichia echinulata (Smith) Richter on phytoplankton production. Ekol Pol 19:475–483

    Google Scholar 

  • Srivastava AK, Bhargava P, Kumar A, Rai LC, Neilan BA (2009) Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Syst 5/1/4:17. doi:10.1186/1746-1448-5-4

  • Stewart WDP (1967) Nitrogen turnover in fresh and marine habitats. II. Use of 15N in measuring nitrogen fixation in the field. Ann Bot N.S. 31:385–407

    Google Scholar 

  • Taton A, Grusibic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270

    Article  CAS  Google Scholar 

  • Thajuddin N, Muralitharan G, Sundaramoorthy M, Ramamoorthy R, Ramachandran S, Akbarsha MA, Gunasekaran M (2010) Morpholo­gical and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microbiol 50:254–265

    Article  PubMed  CAS  Google Scholar 

  • Theivendirarajah K, Jeyaseelan K (1977) The ingestion of blue-green algae by mosquito larvae. Ceylon J Sci Biol Sci 12:156

    Google Scholar 

  • Thomazeau S, Houdan-Fourmont A, Couté A, Duval C, Couloux A, Rousseau F, Bernard C (2010) The contribution of sub-Saharan African strains to the phylogeny of cyanobacteria: focusing on the Nostocaceae (Nostocales, Cyanobacteria). J Phycol 46:564–579

    Article  CAS  Google Scholar 

  • Trautman DA, Borowitzka MA (1999) Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Mar Ecol Prog Ser 179:215–229

    Article  Google Scholar 

  • Turner BL, Baxter R, Ellwood NTW, Whitton BA (2003a) Seasonal phosphatase activities of mosses from Upper Teesdale, northern England. J Bryol 25:189–200

    Article  Google Scholar 

  • Turner BL, Baxter R, Whitton BA (2003b) Nitrogen and phosphorus in soil solutions and drainage streams in Upper Teesdale, northern England: implications of organic compounds for biological nutrient limitation. Sci Total Environ 314–316C:153–170

    Article  CAS  Google Scholar 

  • Tymowski RG, Duthie HC (2000) Life strategy and phosphorus relations of the cyanobacterium Gloeotrichia echinulata in an oligotrophic Precambrian Shield lake. Arch Hydrobiol 148:321–332

    CAS  Google Scholar 

  • Uku J, Björk M, Bergman B, Diez B (2007) Characterization and comparison of prokaryotic epiphytes associated with three East African seagrasses. J Phycol 43:768–779

    Article  CAS  Google Scholar 

  • Vaidya HM (1989) Comparative studies on Calothrix isolates from Nepalese rice-fields. M.Sc. thesis, University of Durham, Durham

    Google Scholar 

  • Van Geel B, de Lange L, Wiegers J (1984) Reconstruction and interpretation of the local vegetational succession of a Lateglacial deposit from Usselo (The Netherlands), based on the analysis of micro- and macrofossils. Acta Bot Neerl 33(4):535–546

    Google Scholar 

  • Van Wagoner RM, Drummond AK, Jeffrey LC, Wright JLC (2007) Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol 61:89–217

    Article  PubMed  CAS  Google Scholar 

  • Vuorio K, Meili M, Sarvala J (2009) Natural isotopic composition of carbon(δ13C) correklates with colony size in the planktonic cyano­bacterium Gloeotrichia echinulata. Limnol Oceanogr 54(3):925–929

    Article  CAS  Google Scholar 

  • Webber EE (1967) Bluegreen algae from a Massachusetts salt marsh. Bull Torrey Bot Club 94:99–106

    Article  Google Scholar 

  • Weckesser J, Hofmann K, Jürgens EJ, Whitton BA, Raffelberger B (1988) Isolation and chemical analysis of the sheaths of the filamentous cyanobacteria Calothrix parietina and C. scopulorum. J Gen Microbiol 134:629–634

    CAS  Google Scholar 

  • West W (1912) Fresh-water algae. In: Clare Island survey. Proc R Irish Acad XXXI(Pt 16):1–62

    Google Scholar 

  • Whitton BA (1987) The biology of Rivulariaceae. In: Fay P, Van Baalen C (eds) The Cyanobacteria – a comprehensive review. Elsevier, Amsterdam, pp 513–534, 543 pp

    Google Scholar 

  • Whitton BA (1988) Hairs in eukaryotic algae. In: Round FE (ed) Algae and the aquatic environment contributions in honour of J.W.G.Lund. Biopress, Bristol, pp 446–460, 460 pp

    Google Scholar 

  • Whitton BA (1989) Genus I. Calothrix Agardh 1824. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3, 1st edn. Williams & Wilkins, Baltimore, pp 1791–1794

    Google Scholar 

  • Whitton BA (2007) The blue-green algae of Clare Island, Co. Mayo, Ireland. In: New Survey of Clare Island, vol 6: the freshwater and terrestrial algae. Royal Irish Academy, Dublin, pp +141–178, 254 pp

    Google Scholar 

  • Whitton BA (2008) Cyanobacterial diversity in relation to the environment. In: Evangelista V, Barsanti L, Frassanito AM, Gualtieri P, Passarelli V (eds) Algal toxins, nature, occurrence, effect and detection. Springer, Dordrecht, pp 17–35, 399 pp

    Chapter  Google Scholar 

  • Whitton BA (2009) Phosphorus status and the naming of freshwater algae. Algas 41:20–22

    Google Scholar 

  • Whitton BA (2011) Phylum cyanobacteria (Cyanophyta). In: John DM, Whiton BA, Brook AJ (eds) The freshwater algal flora of the British Isles, 2nd edn. Cambridge University Press, Cambridge, pp 31–158, 878 pp

    Google Scholar 

  • Whitton BA, Neal C (2010) Organic phosphate in UK rivers and its relevance to algal and bryophyte surveys. Int J Limnol 47:1–8

    Google Scholar 

  • Whitton BA, Potts M (eds) (2000) The ecology of cyanobacteria. Their diversity in time and space. Springer, Dordrecht, 669 pp

    Google Scholar 

  • Whitton BA, Gale NL, Wixson BG (1981) Chemistry and plant ecology of zinc-rich wastes dominated by blue-green algae. Hydrobiologia 83:331–341

    Article  CAS  Google Scholar 

  • Whitton BA, Grainger SLJ, Harris N (1986) Blue heterocysts in the Rivulariaceae. Br Phycol J 21(3):338–339

    Google Scholar 

  • Whitton BA, Aziz A, Francis P, Rother JA, Simon JW, Tahmida ZN (1988a) Ecology of deepwater rice-fields in Bangladesh. 1. Physical and chemical environment. Hydrobiologia 169:3–22

    Article  CAS  Google Scholar 

  • Whitton BA, Aziz A, Rother JA (1988b) Ecology of deepwater rice-fields in Bangladesh. 3. Associated algae and macrophytes. Hydrobiologia 169:31–42

    Article  Google Scholar 

  • Whitton BA, Grainger SLJ, Hawley GRW, Simon JW (1991) Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb Ecol 21:85–98

    Article  CAS  Google Scholar 

  • Whitton BA, Yelloly JM, Christmas M, Hernández I (1998) Surface phosphatase activity of benthic algal communities in a stream with highly variable ambient phosphate concentrations. Verh Int Verein Limnol 26:967–972

    CAS  Google Scholar 

  • Whitton BA, Al-Shehri AH, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. Commonwealth Agricultural Bureau, Wallingford, pp 205–241, 399 pp

    Chapter  Google Scholar 

  • Wickstrom CE, Castenholz W (1985) Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring. Ecology 66:1024–1241

    Article  Google Scholar 

  • Wilkinson CR, Sammarco PW, Trott LA (1985) Seasonal and fish grazing effects on rates of nitrogen fixation on coral reefs (Great Barrier Reef, Australia). In: Proceedings of the 5th international coral reef congress, vol 4l, Tahiti, pp 61–65

    Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 487–493, 721 pp

    Google Scholar 

  • Wood P (1984) Structural and physiological studies on the effects of mineral deficiencies on the Rivulariaceae (Cyanobacteria), vols I and II. Ph D thesis (CNAA), Sunderland Polytechnic (now Sunderland University), UK

    Google Scholar 

  • Wood P, Peat A, Whitton BA (1986) Influence of phosphorus status on fine structure of the cyanobacterium (blue-green alga) Calothrix parietina. Cytobios 47:89–99

    CAS  Google Scholar 

  • Yelloly JM, Whitton BA (1996) Seasonal changes in ambient phosphate and phosphatase activities of the cyanobacterium Rivularia atra in intertidal pools at Tyne Sands, Scotland. Hydrobiologia 325:201–212

    Article  CAS  Google Scholar 

  • Zarmouh MM (2010) Antibacterial activity of Rivularia species and Oscillatoria salina collected from coastal region of Misurata, Libya. J Arab Soc Med Res 5(2):159–163

    Google Scholar 

  • Zehnder A (1963) Kulturversuch mit Gloeotrichia echinulata (J. E. Smith) P. Richter. Schweiz Z Hydrol 25:65–83

    CAS  Google Scholar 

  • Zhao-Liang X (1984) Investigation on the procaryotic microfossils from Gaoyuzhuang Formation, Jixian, North China. Acta Bot Sin 26(216–222):312–319

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Yuwadee Peerapornpisal and her students at the Department of Biology, Chiangmai University, Thailand, for helping B.A.W. to visit the Queen Sirikit Botanic Garden with its conspicuous floating cyanobacterial colonies. We much appreciate helpful comments on a draft of this chapter by Dr Allan Pentecost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Whitton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Whitton, B.A., Mateo, P. (2012). Rivulariaceae. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_22

Download citation

Publish with us

Policies and ethics