Skip to main content

Calcium Signaling in Osteoclast Differentiation and Bone Resorption

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Calcium (Ca2+) signaling controls multiple cellular functions and is regulated by the release of Ca2+ from internal stores and its entry from the extracellular fluid. Ca2+ signals in osteoclasts are essential for diverse cellular functions including differentiation, bone resorption and gene transcription. Recent studies have highlighted the importance of intracellular Ca2+ signaling for osteoclast differentiation. Receptor activator of NF-κB ligand (RANKL) signaling induces oscillatory changes in intracellular Ca2+ concentrations, resulting in Ca2+/calcineurin-dependent dephosphorylation and activation of nuclear factor of activated T cells c1 (NFATc1), which translocates to the nucleus and induces osteoclast-specific gene transcription to allow differentiation of osteoclasts. Recently, some reports indicated that RANKL-induced Ca2+ oscillation involved not only repetitive intracellular Ca2+ release from inositol 1, 4, 5-triphosphate channels in Ca2+ store sites, but also via store-operated Ca2+ entry and Ca2+ entry via transient receptor potential V channels during osteoclast differentiation. Ca2+-regulatory cytokines and elevation of extracellular Ca2+ concentrations have been shown to increase intracellular Ca2+ concentrations ([Ca2+]i) in mature osteoclasts, regulating diverse cellular functions. RANKL-induced [Ca2+]i increase has been reported to inhibit cell motility and the resorption of cytoskeletal structures in mature osteoclasts, resulting in suppression of bone-resorption activity. In conclusion, Ca2+ signaling activates differentiation in osteoclast precursors but suppresses resorption in mature osteoclasts. This chapter focuses on the roles of long-term Ca2+ oscillations in differentiation and of short-term Ca2+ increase in osteoclastic bone resorption activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feske S (2007) Calcium signaling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    Article  PubMed  CAS  Google Scholar 

  2. Lewis RS (2001) Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol 19:497–521

    Article  PubMed  CAS  Google Scholar 

  3. Scharenberg AM, Humphries LA, Rawlings DJ (2007) Calcium signaling and cell-fate choice in B cells. Nat Rev Immunol 7:778–789

    Article  PubMed  CAS  Google Scholar 

  4. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    Article  PubMed  CAS  Google Scholar 

  5. Hogan PG, Rao A, Dissecting I (2007) CRAC, a store-operated calcium current. Trends Biochem Sci 32:235–245

    Article  PubMed  CAS  Google Scholar 

  6. Lewis RS (2007) The molecular choreography of a store-operated calcium channel. Nature 446:284–287

    Article  PubMed  CAS  Google Scholar 

  7. Kajiya H, Okamoto F, Nemoto T, Kimachi K, Goto-T K, Nakayama S, Okabe K (2010) RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium 48:260–269

    Article  PubMed  CAS  Google Scholar 

  8. Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Bosch AV, Bouillon R, Nillius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8:257–265

    Article  PubMed  CAS  Google Scholar 

  9. Miyauchi A, Hruska KA, Greenfield EM, Duncan R, Alvarez J, Barattolo R, Colucci S, Zambonin-Zallone A, Teitelbaum SL, Teti A (1990) Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J Cell Biol 111:2543–2552

    Article  PubMed  CAS  Google Scholar 

  10. van der Eerden BC, Hoenderop JG, de Vries TJ, Schoenmaker T, Buurman CJ, Uitterlinden AG, Pols HA, Bindels RJ, van Leeuwen JP (2005) The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc Natl Acad Sci USA 102:17507–17512

    Article  PubMed  Google Scholar 

  11. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  PubMed  CAS  Google Scholar 

  12. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  PubMed  CAS  Google Scholar 

  13. Dolmetsch RE, Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  PubMed  CAS  Google Scholar 

  14. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  PubMed  CAS  Google Scholar 

  15. Tomida T, Hirose K, Takizawa A, Shibasaki F, Iino M (2003) NFAT functions as a working memory of Ca2+ signals in decoding Ca2+ oscillation. EMBO J 22:3825–3832

    Article  PubMed  CAS  Google Scholar 

  16. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880–885

    Article  PubMed  CAS  Google Scholar 

  17. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signaling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  18. Bootman MD (1995) The elemental principles of calcium signaling. Cell 83:675–678

    Article  PubMed  CAS  Google Scholar 

  19. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  PubMed  CAS  Google Scholar 

  20. Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurosaki T, Iino M (1999) Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308

    Article  PubMed  CAS  Google Scholar 

  21. Kuroda Y (2008) Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc Natl Acad Sci USA 105:8643–8648

    Article  PubMed  CAS  Google Scholar 

  22. Yang S, Li YP (2007) RGS12 is essential for RANKL-evoked signaling for terminal differentiation of osteoclasts in vitro. J Bone Miner Res 22:45–54

    Article  PubMed  CAS  Google Scholar 

  23. Grafton G (2001) Calcium channels in lymphocytes. Immunology 104:119–126

    Article  PubMed  CAS  Google Scholar 

  24. House SJM, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456:769–785

    Article  PubMed  CAS  Google Scholar 

  25. Schmidt U, Schmidt U, Boucheron N, Unger B, Ellmeier W (2004) The role of Tec family kinases in myeloid cells. Int Arch Allergy Immunol 134:65–78

    Article  PubMed  CAS  Google Scholar 

  26. Deng X, Wang Y, Soboloff J, Gill DL (2009) Stim and Orai: dynamic intermembrane coupling to control cellular calcium signals. J Biol Chem 284:22501–22505

    Article  PubMed  CAS  Google Scholar 

  27. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    Article  PubMed  CAS  Google Scholar 

  28. Roos DI, Gregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    Article  PubMed  CAS  Google Scholar 

  29. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122

    Article  PubMed  CAS  Google Scholar 

  30. Wu MM, Buchanan J, Luik RM, Lewis RS (2006) Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 174:803–813

    Article  PubMed  CAS  Google Scholar 

  31. Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    Article  PubMed  CAS  Google Scholar 

  32. Zhou Y, Lewis TL, Robinson LJ, Brundage KM, Schafer R, Martin KH, Blair HC, Soboloff J, Barnett JB (2011) The role of calcium release activated calcium channels in osteoclast differentiation. J Cell Physiol 226:1082–1089

    Article  PubMed  CAS  Google Scholar 

  33. Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM (2010) RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem 285:6913–6921

    Article  PubMed  CAS  Google Scholar 

  34. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Mérillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ (2003) Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112:1906–1914

    PubMed  CAS  Google Scholar 

  35. Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216:47–53

    Article  PubMed  CAS  Google Scholar 

  36. Nillius B (2007) Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull Mem Acad R Med Belg 162:244–253

    Google Scholar 

  37. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR (1988) Identification of a putative regulator of early T cell activation genes. Science 241:202–205

    Article  PubMed  CAS  Google Scholar 

  38. Takayanagi H (2007) The role of NFAT in osteoclast formation. Ann N Y Acad Sci 1116:227–237

    Article  PubMed  CAS  Google Scholar 

  39. Sambandam Y, Blanchard JJ, Daughtridge G, Kolb RJ, Shanmugarajan S, Pandruvada SN, Bateman TA, Reddy SV (2010) Microarray profile of gene expression during osteoclast differentiation in modelled microgravity. J Cell Biochem 111:1179–1187

    Article  PubMed  CAS  Google Scholar 

  40. Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H (2006) Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 12:1410–1416

    Article  PubMed  CAS  Google Scholar 

  41. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  PubMed  CAS  Google Scholar 

  42. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–763

    Article  PubMed  CAS  Google Scholar 

  43. Yang S, Li YP (2007) RGS10-null mutation impairs osteoclast differentiation resulting from the loss of [Ca2+]i oscillation regulation. Genes Dev 21:1803–1816

    Article  PubMed  CAS  Google Scholar 

  44. Blair HC, Teitelbaum SL, Ghiselli R, Gluck S (1989) Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245:855–857

    Article  PubMed  CAS  Google Scholar 

  45. Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215

    Article  PubMed  CAS  Google Scholar 

  46. Salo J, Lehenkari P, Mulari M, Metsikkö K, Väänänen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    Article  PubMed  CAS  Google Scholar 

  47. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276:266–269

    Article  PubMed  CAS  Google Scholar 

  48. Datta HK, Horrocks BR (2003) Mechanisms of calcium disposal from osteoclastic resorption hemivacuole. J Endocrinol 176:1–5

    Article  PubMed  CAS  Google Scholar 

  49. Datta HK, MacIntyre I, Zaidi M (1989) The effect of extracellular calcium elevation on morphology and function of isolated rat osteoclasts. Biosci Rep 9:747–751

    Article  PubMed  CAS  Google Scholar 

  50. Zaidi M, Moonga BS, Adebanjo OA (2002) Novel mechanisms of calcium handling by the osteoclast: a review-hypothesis. Proc Assoc Am Physicians 111:319–327

    Article  Google Scholar 

  51. Bax CM, Shankar VS, Moonga BS, Huang CL, Zaidi M (1992) Is the osteoclast calcium “receptor” a receptor-operated calcium channel? Biochem Biophys Res Commun 183:619–625

    Article  PubMed  CAS  Google Scholar 

  52. Bennett BD, Alvarez U, Hruska KA (2001) Receptor-operated osteoclast calcium sensing. Endocrinology 142:1968–1974

    Article  PubMed  CAS  Google Scholar 

  53. Kajiya H, Okabe K, Okamoto F, Tsuzuki T, Soeda H (2000) Protein tyrosine kinase inhibitors increase cytosolic calcium and inhibit actin organization as resorbing activity in rat osteoclasts. J Cell Physiol 183:83–90

    Article  PubMed  CAS  Google Scholar 

  54. Lakkakorpi PT, Lehenkari PP, Rautiala TJ, Väänänen HK (1996) Different calcium sensitivity in osteoclasts on glass and on bone and maintenance of cytoskeletal structures on bone in the presence of high extracellular calcium. J Cell Physiol 168:668–677

    Article  PubMed  CAS  Google Scholar 

  55. Yu H, Ferrier J (1993) ATP induces an intracellular calcium pulse in osteoclasts. Biochem Biophys Res Commun 191:357–363

    Article  PubMed  CAS  Google Scholar 

  56. Radding W, Radding W, Jordan SE, Hester RB, Blair HC (1999) Intracellular calcium puffs in osteoclasts. Exp Cell Res 253:689–696

    Article  PubMed  CAS  Google Scholar 

  57. Xia SL, Ferrier J (1995) Calcium signal induced by mechanical perturbation of osteoclasts. J Cell Physiol 163:493–501

    Article  PubMed  CAS  Google Scholar 

  58. Bizzarri C, Shioi A, Teitelbaum SL, Ohara J, Harwalkar VA, Erdmann JM, Lacey DL, Civitelli R (1994) Interleukin-4 inhibits bone resorption and acutely increases cytosolic Ca2+ in murine osteoclasts. J Biol Chem 269:13817–13824

    PubMed  CAS  Google Scholar 

  59. Moonga BS, Alam AS, Bevis PJ, Avaldi F, Soncini R, Huang CL, Zaidi M (1992) Regulation of cytosolic free calcium in isolated rat osteoclasts by calcitonin. J Endocrinol 132:241–249

    Article  PubMed  CAS  Google Scholar 

  60. Kajiya H, Okamoto F, Fukushima H, Takada K, Okabe K (2003) Mechanism and role of high-potassium-induced reduction of intracellular Ca2+ concentration in rat osteoclasts. Am J Physiol Cell Physiol 285:C457–C466

    PubMed  CAS  Google Scholar 

  61. Bekker PJ, Gay CV (1990) Biochemical characterization of an electrogenic vacuolar proton pump in purified chicken osteoclast plasma membrane vesicles. J Bone Miner Res 5:569–579

    Article  PubMed  CAS  Google Scholar 

  62. Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, Bindels RJ, Hoenderop JG (2005) Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16:3188–3195

    Article  PubMed  CAS  Google Scholar 

  63. Chamoux E, Bisson M, Payet MD, Roux S (2010) TRPV-5 mediates a receptor activator of NF-kappa B (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and down-regulates bone resorption. J Biol Chem 285:25354–253562

    Article  PubMed  CAS  Google Scholar 

  64. Zaidi M, Shankar VS, Towhidul Alam AS, Moonga BS, Pazianas M, Huang CL (1992) Evidence that a ryanodine receptor triggers signal transduction in the osteoclast. Biochem Biophys Res Commun 188:1332–1336

    Article  PubMed  CAS  Google Scholar 

  65. Silver IA, Murrills RJ, Etherington DJ (1988) Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175:266–276

    Article  PubMed  CAS  Google Scholar 

  66. Lorget F, Kamel S, Mentaverri R, Wattel A, Naassila M, Maamer M, Brazier M (2000) High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun 268:899–903

    Article  PubMed  CAS  Google Scholar 

  67. Yamaguchi T (2008) The calcium-sensing receptor in bone. J Bone Miner Metab 26:301–311

    Article  PubMed  CAS  Google Scholar 

  68. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, Izumi N, Kawashima H, Ozawa H, Ikeda K, Kameda A, Hakeda Y, Kumegawa M (1998) Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245:419–422

    Article  PubMed  CAS  Google Scholar 

  69. Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K (1999) High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun 261:144–148

    Article  PubMed  CAS  Google Scholar 

  70. Bennet BD, Alvarez U, Hruska KA (2001) Receptor-operated osteoclast calcium sensing. Endocrinology 142:1968–1974

    Article  Google Scholar 

  71. Moonga BS, Davidson R, Sun L, Adebanjo OA, Moser J, Abedin M, Zaidi N, Huang CL, Zaidi M (2001) Identification and characterization of a sodium/calcium exchanger, NCX-1, in osteoclasts and its role in bone resorption. Biochem Biophys Res Commun 283:770–775

    Article  PubMed  CAS  Google Scholar 

  72. Li JP, Kajiya H, Okamoto F, Nakao A, Iwamoto T, Okabe K (2007) Three Na+/Ca2+ exchanger (NCX) variants are expressed in mouse osteoclasts and mediate calcium transport during bone resorption. Endocrinology 148:2116–2125

    Article  PubMed  CAS  Google Scholar 

  73. Arkett SA, Dixon SJ (1992) Sims SM Substrate influences rat osteoclast morphology and expression of potassium conductances. J Physiol 458:633–653

    PubMed  CAS  Google Scholar 

  74. Kanehisa J, Yamanaka T, Doi S, Turksen K, Heersche JN, Aubin JE, Takeuchi H (1990) A band of F-actin containing podosomes is involved in bone resorption by osteoclasts. Bone 11:287–293

    Article  PubMed  CAS  Google Scholar 

  75. Sims SM, Dixon SJ (1989) Inwardly rectifying K+ current in osteoclasts. Am J Physiol 256:C1277–C1282

    PubMed  CAS  Google Scholar 

  76. Dong H, Dunn J, Lytton J (2002) Electrophysiological studies of the cloned rat cardiac NCX1.1 in transfected HEK cells: a focus on the stoichiometry. Ann NY Acad Sci 976:159–165

    Article  PubMed  CAS  Google Scholar 

  77. Sokolow S, Manto M, Gailly P, Molgo J, Vandebrouck C, Vanderwinden JM, Herchuelz A, Schurmans S (2004) Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J Clin Invest 113:265–273

    PubMed  CAS  Google Scholar 

  78. Zaidi M, Datta HK, Moonga B, MacIntyre I (1990) Evidence that the action of calcitonin on the osteoclast is mediated by two G proteins acting via separate post-receptor pathways. J Endocrinol 125:437–481

    Google Scholar 

  79. Chambers TJ, Fuller K, Darby JA (1987) Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J Cell Physiol 132:92–96

    Article  Google Scholar 

  80. Moonga BS, Moss DW, Patchell A, Zaidi M (1990) Intracellular regulation of enzyme secretion from rat osteoclasts and evidence for functional role in bone resorption. J Physiol 490:29–46

    Google Scholar 

  81. Malgaroli A, Meldolesi J, Zambonin-Zallone A, Teti A (1987) Control of cytosolic free calcium in rat and chicken osteoclasts the role of extracellular calcium and calcitonin. J Biol Chem 264:14342–14347

    Google Scholar 

  82. Zaidi M, Chambers TJ, Bevis PJR, Beacham JL, Gaines D, MacIntyre I (1988) Effects of the peptides from the calcitonin gene on bone and bone cells. Q J Exp Physiol 73:471–485

    PubMed  CAS  Google Scholar 

  83. Lakkakorpi PT, Väänänen HK (1991) Kinetics of the osteoclasts cytoskeleton during the resorption cycle in vitro. J Bone Miner Res 6:817–826

    Article  PubMed  CAS  Google Scholar 

  84. Nakamura I, Takahashi N, Sasaki T, Tanaka S, Udagawa N, Murakami H, Kimura K, Kabuyama Y, Kurokawa T, Suda T, Fukui Y (1995) Wortmannin, a specific inhibitor of phosphatidylinositol-3 kinase, blocks osteoclastic bone resorption. FEBS Lett 361:79–84

    Article  PubMed  CAS  Google Scholar 

  85. Zhang D, Udagawa N, Nakamura I, Murakami H, Saito S, Yamasaki K, Shibasaki Y, Morii N, Narumiya S, Takahashi N, Suda T (1995) The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts. J Cell Sci 108:2285–2292

    PubMed  CAS  Google Scholar 

  86. Teti A, Blair HC, Schlesinger P, Grano M, Zambonin-Zallone A, Kahn AJ, Teitelbaum SL, Hruska A (1989) Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression cell matrix attachment structures. J Clin Invest 84:773–780

    Article  PubMed  CAS  Google Scholar 

  87. Lakkakorpi PT, Väänänen HK (1990) Calcitonin, prostaglandin E2 and dibutyryl cyclic adenosine 3, 5-monophospahte disperse the specific microfilament structure in resorbing osteoclasts. J Histochem Cytochem 38:1487–1493

    Article  PubMed  CAS  Google Scholar 

  88. Suzuki H, Nakamura I, Takahashi N, Ikuhara T, Matsuzaki K, Isogai Y, Hori M, Suda T (1996) Calcitonin-induced changes in the cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclast. Endocrinology 137:4685–4690

    Article  PubMed  CAS  Google Scholar 

  89. Teti A, Colucci S, Grano M, Argentino L, Zambonin-Zallone A (1992) Protein kinase C affects microfilaments, bone resorption, and [Ca2+]o sensing in cultured osteoclasts. Am J Physiol 263:C130–C139

    PubMed  CAS  Google Scholar 

  90. Miyauchi A, Alvarez J, Greenfield EM, Teti A, Grano M, Colucci S, Zambonin-Zallone A, Ross FP, Teitelbaum SL, Cheresh D, Hruska KA (1991) Recognition of osteopontin and related peptides by an αvβ3 integrin stimulated immediate cell signals in osteoclasts. J Biol Chem 266:20369–20374

    PubMed  CAS  Google Scholar 

  91. Zallone A (1992) Protein kinase C affects microfilaments, bone resorption, and [Ca2+]o sensing in cultured osteoclasts. Am J Physiol Cell Physiol 263:C130–C139

    Google Scholar 

  92. Grano M, Galimi F, Zambonin G, Colucci S, Cottone E, Zallone-Zambonin A (1996) Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci USA 93:7644–7648

    Article  PubMed  CAS  Google Scholar 

  93. Colucci S, Giannelli G, Grano M, Faccio R, Quaranta V, Zallone-Zambonin A (1996) Human osteoclast-like cells selectively recognize laminin isoforms, an event that induces migration and activates Ca2+ mediated signals. J Cell Sci 109:1527–1535

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (20390475) and the Strategic Study Base Formation Support Business (S1001059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kajiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kajiya, H. (2012). Calcium Signaling in Osteoclast Differentiation and Bone Resorption. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_41

Download citation

Publish with us

Policies and ethics