Skip to main content

Advertisement

Log in

The calcium-sensing receptor in bone

  • Review Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brown EM (1991) Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 71:371–411

    PubMed  CAS  Google Scholar 

  2. Silver IA, Murrilis RJ, Etherington DJ (1988) Microlectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 175:266–276

    Article  PubMed  CAS  Google Scholar 

  3. Stewart AF, Broadus AE (1987) Mineral metabolism. In: Felig P, Baxter JD, Broadus AE, Frohman LA (eds) Endocrinology and Metabolism. McGraw-Hill, New York, pp 1317–1453

    Google Scholar 

  4. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature (Lond) 366:575–580

    Article  CAS  Google Scholar 

  5. Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    PubMed  CAS  Google Scholar 

  6. Baron R (1996) Anatomy and ultrastructure of bone. In: Favus MF (ed) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott-Raven, Philadelphia, pp 3–10

    Google Scholar 

  7. Sugimoto T, Kanatani M, Kano J, Kaji H, Tsukamato T, Yamaguchi T, Fukase M, Chihara K (1993) Effects of high calcium concentration on the functions and interactions of osteoblastic cells and monocytes and on the formation of osteoclast-like cells. J Bone Miner Res 8:1445–1452

    PubMed  CAS  Google Scholar 

  8. Quarles DL, Hartle II JE, Siddhanti SR, Guo R, Hinson TK (1997) A distinct cation-sensing mechanism in MC3T3-E1 osteoblasts functionally related to the calcium receptor. J Bone Miner Res 12:393–402

    Article  PubMed  CAS  Google Scholar 

  9. Yamaguchi T, Chattopadhyay N, Kifor O, Butters RR, Sugimoto T, Brown EM (1998) Mouse osteoblastic cell line (MC3T3-E1) expresses extracellular calcium (Ca 2+o )-sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3-E1 cells. J Bone Miner Res 13:1530–1538

    Article  PubMed  CAS  Google Scholar 

  10. Godwin SL, Soltoff SP (1997) Extracellular calcium and plateletderived growth factor promote receptor-mediated chemotaxis in osteoblasts through different signaling pathways. J Biol Chem 272:11307–11312

    Article  PubMed  CAS  Google Scholar 

  11. Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96: 191–198

    Article  PubMed  CAS  Google Scholar 

  12. Mailland M, Waelchli R, Ruat M, Boddeke HGWM, Seuwen K (1997) Stimulation of cell proliferation by calcium and a calcimimetic compound. Endocrinology 138:3601–3636

    Article  PubMed  CAS  Google Scholar 

  13. Quarles LD (1997) Cation-sensing receptors in bone: a novel paradigm for regulating bone remodeling? J Bone Miner Res 12:1971–1974

    Article  PubMed  CAS  Google Scholar 

  14. Pi M, Hinson TK, Quarles L (1999) Failure to detect the extracellular calcium-sensing receptor (CasR) in human osteoblast cell lines. J Bone Miner Res 14: 1310–1319

    Article  PubMed  CAS  Google Scholar 

  15. Gunnet JW, Zhou L, Demarest KT (1997) Comparison of the calcium-sensing receptor in human SK-N-MC, TT, HEK 293, and SAOS-2 osteosarcoma cells. J Bone Miner Res 12(suppl 1):S327 (abstract)

    Google Scholar 

  16. Bapty BW, Dai L-J, Ritchie G, Jirik F, Canaff L, Hendy GN, Quamme GA (1998) Extracellular Mg2+-and Ca2+-sensing in mouse distal convoluted tubule. Kidney Int 53:583–592

    Article  PubMed  CAS  Google Scholar 

  17. Yamaguchi T, Kifor O, Chattopadhyay N, Brown EM (1998) Expression of extracellular calcium (Ca 2+o )-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem Biophys Res Commun 243:753–757

    Article  PubMed  CAS  Google Scholar 

  18. Yamaguchi T, Chattopadhyay N, Kifor O, Ye C, Vassilev PM, Sanders JL, Brown EM (2001) Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line. Am J Physiol 280:C382–C393

    CAS  Google Scholar 

  19. Chang W, Tu C, Chen TH, Komuves L, Oda Y, Pratt SA, Miller S, Shoback D (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140:5883–5893

    Article  PubMed  CAS  Google Scholar 

  20. Takeyama S, Yoshimura Y, Shirai Y, Deyama Y, Hasegawa T, Yawaka Y, Kikuiri T, Matsumoto A, Fukuda H (2000) Low calcium environment effects osteoprotegerin ligand/osteoclast differentiation factor. Biochem Biophys Res Commun 276: 524–529

    Article  PubMed  CAS  Google Scholar 

  21. Kanatani M, Sugimoto T, Kanzawa M, Yano S, Chihara K (1999) High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells. Biochem Biophys Res Commun 261:144–148

    Article  PubMed  CAS  Google Scholar 

  22. Chattopadhyay N, Yano S, Tfelt-Hansen J, Rooney P, Kanuparthi D, Bandyopadhyay S, Ren X, Terwilliger E, Brown EM (2004) Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 145:3451–3462

    Article  PubMed  CAS  Google Scholar 

  23. Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci U S A 101:5140–5145

    Article  PubMed  CAS  Google Scholar 

  24. Mahonen A, Pirskanen A, Keinanen R, Maenpaa PH (1990) Effect of 1,25(OH)2D3 on its receptor mRNA levels and osteocalcin synthesis in human osteosarcoma cells. Biochim Biophys Acta 1048:30–37

    PubMed  CAS  Google Scholar 

  25. Quarles LD, Hartle JE II, Middleton JP, Zhang J, Arthur JM, Raymond JR (1994) Aluminum-induced DNA synthesis in osteoblasts: mediation by a G-protein coupled cation sensing mechanism. J Cell Biochem 56:106–117

    Article  PubMed  CAS  Google Scholar 

  26. Godwin SL, Soltoff SP (2002) Calcium-sensing receptormediated activation of phospholipase C-γ1 is downstream of phospholipase C-β and protein kinase C in MC3T3-E1 osteoblasts. Bone (NY) 30:559–566

    CAS  Google Scholar 

  27. Hartle II JE, Prpic V, Siddhanti SR, Spurney RF, Quarles LD (1996) Differential regulation of receptor-stimulated cyclic adenosine monophosphate production by polyvalent cations in MC3T3-E1 osteoblasts. J Bone Miner Res 11:789–799

    PubMed  CAS  Google Scholar 

  28. Sugimoto T, Kanatani M, Kano J, Kobayashi T, Yamaguchi T, Fukase M, Chihara K (1994) IGF-I mediates the stimulatory effect of high calcium concentration on osteoblastic cell proliferation. Am J Physiol 266:E709–E716

    PubMed  CAS  Google Scholar 

  29. Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131

    Article  PubMed  CAS  Google Scholar 

  30. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4:82–89

    Article  PubMed  CAS  Google Scholar 

  31. Kyriakis JM, Avruch J (1996) Protein kinase cascades activated by stress and inflammatory cytokines. BioEssays 18:567–577

    Article  PubMed  CAS  Google Scholar 

  32. Davis RJ (1994) MAPKs: new JNK expands the group. Trends Biochem Sci 19:470–473

    Article  PubMed  CAS  Google Scholar 

  33. Matsuda N, Morita N, Matsuda K, Watanabe M (1998) Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 249:350–354

    Article  PubMed  CAS  Google Scholar 

  34. Yamaguchi T, Chattopadhyay N, Kifor O, Sanders JL, Brown EM (2000) Activation of p42/44 and p38 mitogen-activated protein kinases by extracellular calcium-sensing receptor agonists induces mitogenic responses in the mouse osteoblastic MC3T3-E1 cell line. Biochem Biophys Res Commun 279:363–368

    Article  PubMed  CAS  Google Scholar 

  35. Ye CP, Yamaguchi T, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM (2000) Extracellular calcium-sensing-receptor (CaR)-mediated opening of an outward K+ channel in murine MC3T3-E1 osteoblastic cells: evidence for expression of a functional CaR. Bone (NY) 27:21–27

    CAS  Google Scholar 

  36. Yamauchi M, Yamaguchi T, Kaji H, Sugimoto T, Chihara K (2005) Involvement of calcium-sensing receptor in osteoblastic differentiation of mouse MC3T3-E1 cells. Am J Physiol Endocrinol Metab 288:E608–E616

    Article  PubMed  CAS  Google Scholar 

  37. Garner SC, Pi M, Tu Q, Quarles LD (2001) Rickets in cationsensing receptor-deficient mice: an unexpected skeletal phenotype. Endocrinology 142:3996–4005

    Article  PubMed  CAS  Google Scholar 

  38. Tu Q, Pi M, Karsenty G, Simpson L, Liu S, Quarles LD (2003) Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 111:1029–1037

    PubMed  CAS  Google Scholar 

  39. Kos CH, Karaplis AC, Peng JB, Hediger MA, Goltzman D, Mohammad KS, Guise TA, Pollak MR (2003) The calciumsensing receptor is required for normal calcium homeostasis independent of parathyroid hormone. J Clin Invest 111:1021–1028

    PubMed  CAS  Google Scholar 

  40. Pi M, Garner SC, Flannery P, Spurney RF, Quarles LD (2000) Sensing of extracellular cations in CasR-deficient osteoblasts. Evidence for a novel cation-sensing mechanism. J Biol Chem 275:3256–3263

    CAS  Google Scholar 

  41. Rodriguez L, Tu C, Cheng Z, Chen TH, Bikle D, Shoback D, Chang W (2005) Expression and functional assessment of an alternatively spliced extracellular Ca2+-sensing receptor in growth plate chondrocytes. Endocrinology 146:5294–5303

    Article  PubMed  CAS  Google Scholar 

  42. Oda Y, Tu CL, Pillai S, Bikle DD (1998) The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 273:23344–23352

    Article  PubMed  CAS  Google Scholar 

  43. Kubo Y, Miyashita T, Murata Y (1998) Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 279:1722–1725

    Article  PubMed  CAS  Google Scholar 

  44. Skerry TM (1999) Identification of novel signaling pathways during functional adaptation of the skeleton to mechanical loading: the role of glutamate as a paracrine signaling agent in the skeleton. J Bone Miner Metab 17:66–70

    Article  PubMed  CAS  Google Scholar 

  45. Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, Fontilla-Poole M, Mays RW, Brunden KR, Harrington JJ, Quarles LD (2005) Identification of a novel extracellular cation-sensing Gprotein-coupled receptor. J Biol Chem 280:40201–40209

    Article  PubMed  CAS  Google Scholar 

  46. Dvorak MM, Chen TH, Orwoll B, Garvey C, Chang W, Bikle DD, Shoback DM (2007) Constitutive activity of the osteoblast Ca2+-sensing receptor promotes loss of cancellous bone. Endocrinology 148:3156–3163

    Article  PubMed  CAS  Google Scholar 

  47. Chang W, Tu C, Chen T, Liu B, Elalieh H, Dvorak M, Clemens T, Kream B, Halloran B, Bikle D, Shoback D (2007) Conditional knockouts in early and mature osteoblasts reveal a critical role for Ca2+ receptors in bone development. J Bone Miner Res 22(suppl 1):S79

    Google Scholar 

  48. House MG, Kohlmeier L, Chattopadhyay N, Kifor O, Yamaguchi T, LeBoff MS, Glowacki J, Brown EM (1997) Expression of an extracellular calcium-sensing receptor in human and mouse bone marrow cells. J Bone Miner Res 12:1959–1970

    Article  PubMed  CAS  Google Scholar 

  49. Ogata M, Nishikawa S, Ikuta K, Yamamura F, Naito M, Takahashi K, Nishikawa S (1988) B cell ontogeny in murine embryo studied by a culture system with the monolayer of a stromal cell clone, ST2: B cell progenitor develops first in the embryonal body rather than in the yolk sac. EMBO J 7:1337–1343

    Google Scholar 

  50. Yamaguchi T, Chattopadhyay N, Kifor O, Brown EM (1998) Extracellular calcium (Ca 2+o )-sensing receptor in a murine bone marrow-derived stromal cell line (ST2): potential mediator of the actions of Ca 2+o on the function of ST2 cells. Endocrinology 139:3561–3568

    Article  PubMed  CAS  Google Scholar 

  51. Greenberger JS (1991) The hematopoietic microenvironment. Crit Rev Oncol Hematol 11:65–84

    Article  PubMed  CAS  Google Scholar 

  52. Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci U S A 87:7260–7264

    Article  PubMed  CAS  Google Scholar 

  53. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature (Lond) 397:315–323

    Article  CAS  Google Scholar 

  54. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  PubMed  CAS  Google Scholar 

  55. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  56. Yamaguchi A, Ishizuya T, Kintou N, Wada Y, Katagiri T, Wozney JM, Rosen V, Yoshiki S (1996) Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem Biophys Res Commun 220:366–371

    Article  PubMed  CAS  Google Scholar 

  57. Nishimura M, Yuasa K, Mori K, Miyamoto N, Ito M, Tsurudome M, Nishio M, Kawano M, Komada H, Uchida A, Ito Y (2005) Cytological properties of stromal cells derived from giant cell tumor of bone (GCTSC) which can induce osteoclast formation of human blood monocytes without cell to cell contact. J Orthop Res 23:979–987

    Article  PubMed  CAS  Google Scholar 

  58. Caplan AI, Dennis JE (1996) Mesenchymal stem cells: Progenitors, progeny, and pathways. J Bone Miner Metab 14:193–201

    Article  Google Scholar 

  59. Chang W, Tu C, Bajra R, Komuves L, Miller S, Strewler G, Shoback D (1999) Calcium sensing in cultured chondrogenic RCJ3.1C5.18 cells. Endocrinology 140:1911–1919

    Article  PubMed  CAS  Google Scholar 

  60. McNeil SE, Hobson SA, Nipper KD, Rodland KD (1998) Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. J Biol Chem 273:1114–1120

    Article  PubMed  CAS  Google Scholar 

  61. Mundy GR, Varani J, Orr W, Gondek MD, Ward PA (1978) Resorbing bone is chemotactic for monocytes. Nature (Lond) 275:132–135

    Article  CAS  Google Scholar 

  62. Yamaguchi T, Kifor O, Chattopadhyay N, Bai M, Brown EM (1998) Extracellular calcium (Ca 2+o )-sensing receptor in a mouse monocyte-macrophage cell line (J774): potential mediator of the actions of Ca 2+o on the function of J774 cells. J Bone Miner Res 13:1390–1397

    Article  PubMed  CAS  Google Scholar 

  63. Yamaguchi T, Olszak I, Chattopadhyay N, Butters RR, Kifor O, Scadden DT, Brown EM (1998) Expression of extracellular calcium (Ca 2+o )-sensing receptor in human peripheral blood monocytes. Biochem Biophys Res Commun 246:501–506

    Article  PubMed  CAS  Google Scholar 

  64. Fujikawa Y, Quinn JMW, Sabokbar A, McGee JOD, Athanasou NA (1996) The human osteoclast precursor circulates in the monocyte fraction. Endocrinology 137:4058–4060

    Article  PubMed  CAS  Google Scholar 

  65. Yamaguchi T, Ye C, Chattopadhyay N, Sanders JL, Vassilev PM, Brown EM (2000) Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel. Calcif Tissue Int 66:375–382

    Article  PubMed  CAS  Google Scholar 

  66. Chang W, Chen T-H, Gardner P, Shoback D (1995) Regulation of Ca2+-conducting currents in parathyroid cells by extracellular Ca2+ and channel blockers. Am J Physiol 269:E864–E877

    PubMed  CAS  Google Scholar 

  67. McGehee DS, Aldersberg M, Liu K-P, Hsuing S-C, Heath MJS, Tamir H (1997) Mechanism of extracellular Ca2+ receptor-stimulated hormone release from sheep thyroid parafollicular cells. J Physiol 502:31–44

    Article  PubMed  CAS  Google Scholar 

  68. Ye C, Rogers K, Bai M, Quinn SJ, Brown EM, Vassilev PM (1996) Agonists of the Ca2+-sensing receptor (CaR) activate nonselective cation channels in HEK293 cells stably transfected with the human CaR. Biochem Biophys Res Commun 226:572–579

    Article  PubMed  CAS  Google Scholar 

  69. Olszak IT, Poznansky MC, Evans RH, Olson D, Kos C, Pollak MR, Brown EM, Scadden DT (2000) Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J Clin Invest 105:1299–1305

    Article  PubMed  CAS  Google Scholar 

  70. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051

    Article  PubMed  CAS  Google Scholar 

  71. Bornefalk E, Ljunghall S, Lindh E, Bengtson O, Johansson AG, Ljunggren O (1997) Regulation of interleukin-6 secretion from mononuclear blood cells by extracellular calcium. J Bone Miner Res 12:228–233

    Article  PubMed  CAS  Google Scholar 

  72. Bornefalk E, Ridefelt P, Ljunghall S, Ljunggren O (1997) Regulation of cytokine secretion from mononuclear cells by divalent cations. J Bone Miner Res 12(suppl 1):S435 (abstract)

    Google Scholar 

  73. Wang YB, Guo JJ, Liu YJ, Deng FY, Jiang DK, Deng HW (2006) The human calcium-sensing receptor and interleukin-6 genes are associated with bone mineral density in Chinese. Yi Chuan Xue Bao 33:870–880

    PubMed  CAS  Google Scholar 

  74. Kanatani M, Sugimoto T, Fukase M, Chihara K (1994) Role of interleukin-6 and prostaglandins in the effect of monocyteconditioned medium on osteoclast formation. Am J Physiol 267: E868–E876

    PubMed  CAS  Google Scholar 

  75. Kanatani M, Sugimoto T, Fukase M, Fujita T (1991) Effect of elevated extracellular calcium on the proliferation of osteoblastic MC3T3-E1 cells:its direct and indirect effects via monocytes. Biochem Biophys Res Commun 181:1425–1430

    Article  PubMed  CAS  Google Scholar 

  76. Suda T, Takahashi N, Martin TJ (1992) Modulation of osteoclast formation. Endocr Rev 13:66–80

    Article  PubMed  CAS  Google Scholar 

  77. Roodman GD (1991) Osteoclast differentiation. Crit Rev Oral Biol Med 2:389–409

    PubMed  CAS  Google Scholar 

  78. Moonga BS, Moss DW, Patchell A, Zaidi M (1990) Intracellular regulation of enzyme release from rat osteoclasts and evidence for a functional role in bone resorption. J Physiol 429:29–45

    PubMed  CAS  Google Scholar 

  79. Malgaroli A, Meldolesi J, Zambonin-Zallone A, Teti A (1989) Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J Biol Chem 264:14342–14327

    PubMed  CAS  Google Scholar 

  80. Zaidi M, Datta HK, Patchell A, Moonga BS, MacIntyre I (1989) “Calcium-activated” intracellular calcium elevation: a novel mechanism of osteoclast regulation. Biochem Biophys Res Commun 163:1461–1465

    Article  PubMed  CAS  Google Scholar 

  81. Datta HK, MacIntyre I, Zaidi M (1990) The effect of extracellular calcium elevation on morphology and function of isolated osteoclasts. Biosci Rep 9:747–751

    Article  Google Scholar 

  82. Zaidi M, Kerby J, Huang CLH, Alam ASMT, Rathod H, Chambers TJ, Moonga BS (1991) Divalent cations mimic the inhibitory effect of extracellular ionised calcium on bone resorption by isolated rat osteoclasts: further evidence for a “calcium receptor.” J Cell Physiol 149:422–427

    Article  PubMed  CAS  Google Scholar 

  83. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, Izumi N, Kawashima H, Ozawa H, Ikeda K, Kameda A, Hakeda Y, Kumegawa M (1998) Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells. Biochem Biophys Res Commun 245:419–422

    Article  PubMed  CAS  Google Scholar 

  84. Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S, Terwilliger EF, Brazier M, Brown EM (2006) The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J 20:2562–2564

    Article  PubMed  CAS  Google Scholar 

  85. Bax BE, Shankar VS, Bax CM, Alam AS, Zara S, Moonga BS, Pazianas M, Huang CL, Zaidi M (1993) Functional consequences of the interaction of Ni2+ with the osteoclast Ca2+ “receptor.” Exp Physiol 78:517–529

    PubMed  CAS  Google Scholar 

  86. Shankar VS, Bax CM, Bax BE, Alam AS, Moonga BS, Simon B, Pazianas M, Huang CL, Zaidi M (1993) Activation of the Ca2+ “receptor” on the osteoclast by Ni2+ elicits cytosolic Ca2+ signals: evidence for receptor activation and inactivation, intracellular Ca2+ redistribution, and divalent cation modulation. J Cell Physiol 155:120–129

    Article  PubMed  CAS  Google Scholar 

  87. Zaidi M, Shankar VS, Towhidul Alam AS, Moonga BS, Pazianas M, Huang CL (1992) Evidence that a ryanodine receptor triggers signal transduction in the osteoclast. Biochem Biophys Res Commun 188:1332–1336

    Article  PubMed  CAS  Google Scholar 

  88. Shankar VS, Pazianas M, Huang CL, Simon B, Adebanjo OA, Zaidi M (1995) Caffeine modulates Ca2+ receptor activation in isolated rat osteoclasts and induces intracellular Ca2+ release. Am J Physiol 268:F447–F454

    PubMed  CAS  Google Scholar 

  89. Zaidi M, Shankar VS, Tunwell R, Adebanjo OA, Mackrill J, Pazianas M, O’Connell D, Simon BJ, Rifkin BR, Venkitaraman AR, Huang CL-H (1995) A ryanodine receptor-like molecule expressed in the osteoclast plasma membrane functions in extracellular Ca2+ sensing. J Clin Invest 96:1582–1590

    Article  PubMed  CAS  Google Scholar 

  90. Yoshida N, Sato T, Kobayashi K, Okada Y (1998) High extracellular Ca2+ and Ca2+-sensing receptor agonists activate nonselective cation conductance in freshly isolated rat osteoclasts. Bone (NY) 22:495–501

    CAS  Google Scholar 

  91. Yoneda T, Alsina MM, Garcia JL, Munday GR (1991) Differentiation of HL-60 cells into cells with the osteoclast phenotype. Endocrinology 129:683–689

    Article  PubMed  CAS  Google Scholar 

  92. Kanazirska MPV, Vassilev PM, Ye CP, Francis JE, Brown EM (1995) Extracellular Ca2+-activated K+ channels modulated by variations in extracellular Ca2+ in dispersed bovine parathyroid cells. Endocrinology 136: 2238–2243

    Article  PubMed  CAS  Google Scholar 

  93. Vassilev PM, Ho-Pao CL, Kanazirska MP, Ye C, Hong, K, Seidman CE, Seidman JG, Brown EM (1997) Cao-sensing receptor (CaR)-mediated activation of K+ channels is blunted in CaR gene-deficient mouse neurons. Neuroreport 8:1411–1416

    Article  PubMed  CAS  Google Scholar 

  94. Chattopadhyay N, Ye C, Singh DP, Kifor O, Vassilev PM, Sinohara T, Chylack LT Jr, Brown EM (1997) Expression of extracellular calcium-sensing receptor by human lens epithelial cells. Biochem Biophys Res Commun 233:801–805

    Article  PubMed  CAS  Google Scholar 

  95. Raisz LG, Kream BE (1983) Regulation of bone formation. N Engl J Med 309:29–35

    PubMed  CAS  Google Scholar 

  96. Nijweide PJ, Burger EH, Klein-Nulend J (2002) The osteocyte. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology, 2nd edn. Academic Press, San Diego, pp 93–107

    Google Scholar 

  97. Kamioka H, Sumitani K, Tagami K, Miki Y, Terai K, Hakeda Y, Kumegawa M, Kawata T (1994) Divalent cations elevate cytosolic calcium of chick osteocytes. Biochem Biophys Res Commun 204:519–524

    Article  PubMed  CAS  Google Scholar 

  98. Bonen DK, Schmid TM (1991) Elevated extracellular calcium concentrations induce type X collagen synthesis in chondrocyte cultures. J Cell Biol 115:1171–1178

    Article  PubMed  CAS  Google Scholar 

  99. Jacenko O, Tuan RS (1995) Chondrogenic potential of chick embryonic calvaria: I. Low calcium permits cartilage differentiation. Dev Dyn 202:13–26

    PubMed  CAS  Google Scholar 

  100. Wong M, Tuan RS (1995) Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells. Dev Biol 167:130–147

    Article  PubMed  CAS  Google Scholar 

  101. Chang W, Tu C, Pratt S, Chen TH, Shoback D (2002) Extracellular Ca2+-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143:1467–1474

    Article  PubMed  CAS  Google Scholar 

  102. Cheng Z, Tu C, Rodriguez L, Chen TH, Dvorak MM, Margeta M, Gassmann M, Bettler B, Shoback D, Chang W (2007) Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology 148:4984–4992

    Article  PubMed  CAS  Google Scholar 

  103. Wu S, Palese T, Mishra OP, Delivoria-Papadopoulos M, De Luca F (2004) Effects of Ca2+ sensing receptor activation in the growth plate. FASEB J 18:143–145

    PubMed  CAS  Google Scholar 

  104. Burton DW, Foster M, Johnson KA, Hiramoto M, Deftos LJ, Terkeltaub R (2005) Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression. Osteoarthritis Cartilage 13:395–404

    Article  PubMed  CAS  Google Scholar 

  105. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature (LOnd) 439:599–603

    Article  CAS  Google Scholar 

  106. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  PubMed  CAS  Google Scholar 

  107. Chattopadhyay N, Quinn SJ, Kifor O, Ye C, Brown EM (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol 74:438–447

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Yamaguchi.

Additional information

T. Yamaguchi is a recipient of JSBMR Academic Award 2007

About this article

Cite this article

Yamaguchi, T. The calcium-sensing receptor in bone. J Bone Miner Metab 26, 301–311 (2008). https://doi.org/10.1007/s00774-008-0843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-008-0843-7

Key words

Navigation