Skip to main content

Regulation of Intercellular Calcium Signaling Through Calcium Interactions with Connexin-Based Channels

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

The synchronization of numerous cellular events requires complex electric and metabolic cell-cell interactions. Connexins are a family of membrane proteins that constitute the molecular basis of two kinds of channels: gap junction channels (GJCs), which allow direct cytoplasm-cytoplasm communication, and hemichannels (HCs) that provide a pathway for exchanges between the intra and extra-cellular milieu. Both kind of connexin-based channels support intercellular communication via intercellular propagation of calcium waves. Here, we review evidence supporting the role of Ca2+ in the regulation of GJCs and HCs formed by connexins. Also it is speculated how these connexin-based channels could contribute to the propagation of intercellular Ca2+ signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    PubMed  CAS  Google Scholar 

  2. Lawrence TS, Beers WH, Gilula NB (1978) Transmission of hormonal stimulation by cell-to-cell communication. Nature 272:501–506

    Article  PubMed  CAS  Google Scholar 

  3. Qu Y, Dahl G (2002) Function of the voltage gate of gap junction channels: selective exclusion of molecules. Proc Natl Acad Sci USA 99:697–702

    Article  PubMed  CAS  Google Scholar 

  4. Sáez JC, Gregory WA, Watanabe T, Dermietzel R, Hertzberg EL, Reid L, Bennett MV, Spray DC (1989) cAMP delays disappearance of gap junctions between pairs of rat hepatocytes in primary culture. Am J Physiol 257:C1–C11

    PubMed  CAS  Google Scholar 

  5. Niessen H, Harz H, Bedner P, Kramer K, Willecke K (2000) Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci 113:1365–1372

    PubMed  CAS  Google Scholar 

  6. Kam Y, Kim DY, Koo SK, Joe CO (1998) Transfer of second messengers through gap junction connexin 43 channels reconstituted in liposomes. Biochim Biophys Acta 1372:384–388

    Article  PubMed  CAS  Google Scholar 

  7. Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459

    Article  PubMed  CAS  Google Scholar 

  8. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418

    Article  PubMed  CAS  Google Scholar 

  9. Lee SM, Clemens MG (1992) Subacinar distribution of hepatocyte membrane potential response to stimulation of gluconeogenesis. Am J Physiol 263:G319–G326

    PubMed  CAS  Google Scholar 

  10. Rohr S (2004) Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res 62:309–322

    Article  PubMed  CAS  Google Scholar 

  11. Sáez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV (2010) Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316:2377–2389

    Article  PubMed  CAS  Google Scholar 

  12. Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol 115:1077–1089

    Article  PubMed  CAS  Google Scholar 

  13. Fruscione F, Scarfi S, Ferraris C, Bruzzone S, Benvenuto F, Guida L, Uccelli A, Salis A, Usai C, Jacchetti E, Ilengo C, Scaglione S, Quarto R, Zocchi E, De Flora A (2011) Regulation of human mesenchymal stem cell functions by an autocrine loop involving NAD(+) release and P2Y11-mediated signaling. Stem Cells Dev 20:1183–1198

    Article  PubMed  CAS  Google Scholar 

  14. Song D, Liu X, Liu R, Yang L, Zuo J, Liu W (2010) Connexin 43 hemichannel regulates H9c2 cell proliferation by modulating intracellular ATP and [Ca2+]. Acta Biochim Biophys Sin (Shanghai) 42:472–482

    Article  CAS  Google Scholar 

  15. Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinéz AD, Sáez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol Biol Cell 19:3501–3513

    Article  PubMed  CAS  Google Scholar 

  16. Burra S, Jiang JX (2009) Connexin 43 hemichannel opening associated with Prostaglandin E(2) release is adaptively regulated by mechanical stimulation. Commun Integr Biol 2:239–240

    Article  PubMed  CAS  Google Scholar 

  17. Li A, Leung CT, Peterson-Yantorno K, Mitchell CH, Civan MM (2010) Pathways for ATP release by bovine ciliary epithelial cells, the initial step in purinergic regulation of aqueous humor inflow. Am J Physiol Cell Physiol 299:C1308–C1317

    Article  PubMed  CAS  Google Scholar 

  18. Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695

    Article  PubMed  CAS  Google Scholar 

  19. Schock SC, Leblanc D, Hakim AM, Thompson CS (2008) ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368:138–144

    Article  PubMed  CAS  Google Scholar 

  20. Cotrina ML, Lin JH, Nedergaard M (2008) Adhesive properties of connexin hemichannels. Glia 56:1791–1798

    Article  PubMed  CAS  Google Scholar 

  21. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    Article  PubMed  CAS  Google Scholar 

  22. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  23. Peracchia C (2004) Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662:61–80

    Article  PubMed  CAS  Google Scholar 

  24. Elinder F, Arhem P (2003) Metal ion effects on ion channel gating. Q Rev Biophys 36:373–427

    Article  PubMed  CAS  Google Scholar 

  25. Rackauskas M, Neverauskas V, Skeberdis VA (2010) Diversity and properties of connexin gap junction channels. Medicina (Kaunas) 46:1–12

    Google Scholar 

  26. Peracchia C, Wang X, Li L, Peracchia LL (1996) Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes. Pflugers Arch 431:379–387

    Article  PubMed  CAS  Google Scholar 

  27. Peracchia C, Sotkis A, Wang XG, Peracchia LL, Persechini A (2000) Calmodulin directly gates gap junction channels. J Biol Chem 275:26220–26224

    Article  PubMed  CAS  Google Scholar 

  28. Sotkis A, Wang XG, Yasumura T, Peracchia LL, Persechini A, Rash JE, Peracchia C (2001) Calmodulin colocalizes with connexins and plays a direct role in gap junction channel gating. Cell Commun Adhes 8:277–281

    Article  PubMed  CAS  Google Scholar 

  29. Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ (2009) Calmodulin mediates the Ca2+  −dependent regulation of Cx44 gap junctions. Biophys J 96:2832–2848

    Article  PubMed  CAS  Google Scholar 

  30. Zhang X, Zou T, Liu Y, Qi Y (2006) The gating effect of calmodulin and calcium on the connexin50 hemichannel. Biol Chem 387:595–601

    Article  PubMed  CAS  Google Scholar 

  31. Zhang X, Qi Y (2005) Role of intramolecular interaction in connexin50: mediating the Ca2+  −dependent binding of calmodulin to gap junction. Arch Biochem Biophys 440:111–117

    Article  PubMed  CAS  Google Scholar 

  32. Torok K, Stauffer K, Evans WH (1997) Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J 326(Pt 2):479–483

    PubMed  CAS  Google Scholar 

  33. De Vuyst E, Decrock E, Cabooter L, Dubyak GR, Naus CC, Evans WH, Leybaert L (2006) Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25:34–44

    Article  PubMed  CAS  Google Scholar 

  34. Sáez JC, Martinéz AD, Brañes MC, Gonzalez HE (1998) Regulation of gap junctions by protein phosphorylation. Braz J Med Biol Res 31:593–600

    Article  PubMed  CAS  Google Scholar 

  35. Morioka M, Hamada J, Ushio Y, Miyamoto E (1999) Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol 58:1–30

    Article  PubMed  CAS  Google Scholar 

  36. Contreras JE, Sánchez HA, Eugenín EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Sáez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA 99:495–500

    Article  PubMed  CAS  Google Scholar 

  37. Sánchez HA, Orellana JA, Verselis VK, Sáez JC (2009) Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 297:C665–C678

    Article  PubMed  CAS  Google Scholar 

  38. Toyama J, Sugiura H, Kamiya K, Kodama I, Terasawa M, Hidaka H (1994) Ca2+-calmodulin mediated modulation of the electrical coupling of ventricular myocytes isolated from guinea pig heart. J Mol Cell Cardiol 26:1007–1015

    Article  PubMed  CAS  Google Scholar 

  39. Jansen LA, de Vrije T, Jongen WM (1996) Differences in the calcium-mediated regulation of gap junctional intercellular communication between a cell line consisting of initiated cells and a carcinoma-derived cell line. Carcinogenesis 17:2311–2319

    Article  PubMed  CAS  Google Scholar 

  40. Alev C, Urschel S, Sonntag S, Zoidl G, Fort AG, Hoher T, Matsubara M, Willecke K, Spray DC, Dermietzel R (2008) The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc Natl Acad Sci USA 105:20964–20969

    Article  PubMed  CAS  Google Scholar 

  41. Pereda AE, Rash JE, Nagy JI, Bennett MV (2004) Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Res Brain Res Rev 47:227–244

    Article  PubMed  CAS  Google Scholar 

  42. Martinéz AD, Sáez JC (1999) Arachidonic acid-induced dye uncoupling in rat cortical astrocytes is mediated by arachidonic acid byproducts. Brain Res 816:411–423

    Article  PubMed  CAS  Google Scholar 

  43. Polonchuk LO, Frolov VA, Yuskovich AK, Dunina-Barkovskaya A (1997) The effect of arachidonic acid on junctional conductance in isolated murine hepatocytes. Membr Cell Biol 11:225–242

    PubMed  CAS  Google Scholar 

  44. Sáez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    Article  PubMed  CAS  Google Scholar 

  45. Ebihara L, Steiner E (1993) Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol 102:59–74

    Article  PubMed  CAS  Google Scholar 

  46. Ebihara L, Liu X, Pal JD (2003) Effect of external magnesium and calcium on human connexin46 hemichannels. Biophys J 84:277–286

    Article  PubMed  CAS  Google Scholar 

  47. Gomez-Hernandez JM, de Miguel M, Larrosa B, Gonzalez D, Barrio LC (2003) Molecular basis of calcium regulation in connexin-32 hemichannels. Proc Natl Acad Sci USA 100:16030–16035

    Article  PubMed  CAS  Google Scholar 

  48. Puljung MC, Berthoud VM, Beyer EC, Hanck DA (2004) Polyvalent cations constitute the voltage gating particle in human connexin37 hemichannels. J Gen Physiol 124:587–603

    Article  PubMed  CAS  Google Scholar 

  49. Verselis VK, Srinivas M (2008) Divalent cations regulate connexin hemichannels by modulating intrinsic voltage-dependent gating. J Gen Physiol 132:315–327

    Article  PubMed  CAS  Google Scholar 

  50. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397:1–14

    Article  PubMed  CAS  Google Scholar 

  51. Retamal MA, Schalper KA, Shoji KF, Orellana JA, Bennett MV, Sáez JC (2007) Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion. J Membr Biol 218:49–63

    Article  PubMed  CAS  Google Scholar 

  52. Orellana JA, Sáez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Sáez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399

    Article  PubMed  CAS  Google Scholar 

  53. Schalper KA, Orellana JA, Berthoud VM, Sáez JC (2009) Dysfunctions of the diffusional membrane pathways mediated by hemichannels in inherited and acquired human diseases. Curr Vasc Pharmacol 7:486–505

    Article  PubMed  CAS  Google Scholar 

  54. DeVries SH, Schwartz EA (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J Physiol 445:201–230

    PubMed  CAS  Google Scholar 

  55. Iovine MK, Gumpert AM, Falk MM, Mendelson TC (2008) Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels. FEBS Lett 582:165–170

    Article  PubMed  CAS  Google Scholar 

  56. Sonntag S, Sohl G, Dobrowolski R, Zhang J, Theis M, Winterhager E, Bukauskas FF, Willecke K (2009) Mouse lens connexin23 (Gje1) does not form functional gap junction channels but causes enhanced ATP release from HeLa cells. Eur J Cell Biol 88:65–77

    Article  PubMed  CAS  Google Scholar 

  57. Ripps H, Qian H, Zakevicius J (2004) Properties of connexin26 hemichannels expressed in Xenopus oocytes. Cell Mol Neurobiol 24:647–665

    Article  PubMed  CAS  Google Scholar 

  58. Gerido DA, DeRosa AM, Richard G, White TW (2007) Aberrant hemichannel properties of Cx26 mutations causing skin disease and deafness. Am J Physiol Cell Physiol 293:C337–C345

    Article  PubMed  CAS  Google Scholar 

  59. Stong BC, Chang Q, Ahmad S, Lin X (2006) A novel mechanism for connexin 26 mutation linked deafness: cell death caused by leaky gap junction hemichannels. Laryngoscope 116:2205–2210

    Article  PubMed  CAS  Google Scholar 

  60. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102:18724–18729

    Article  PubMed  CAS  Google Scholar 

  61. Valiunas V, Weingart R (2000) Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch 440:366–379

    Article  PubMed  CAS  Google Scholar 

  62. Bukauskas FF, Kreuzberg MM, Rackauskas M, Bukauskiene A, Bennett MV, Verselis VK, Willecke K (2006) Properties of mouse connexin 30.2 and human connexin 31.9 hemichannels: implications for atrioventricular conduction in the heart. Proc Natl Acad Sci USA 103:9726–9731

    Article  PubMed  CAS  Google Scholar 

  63. Valiunas V, Mui R, McLachlan E, Valdimarsson G, Brink PR, White TW (2004) Biophysical characterization of zebrafish connexin35 hemichannels. Am J Physiol Cell Physiol 287:C1596–C1604

    Article  PubMed  CAS  Google Scholar 

  64. Ebihara L (1996) Xenopus connexin38 forms hemi-gap-junctional channels in the nonjunctional plasma membrane of Xenopus oocytes. Biophys J 71:742–748

    Article  PubMed  CAS  Google Scholar 

  65. Ripps H, Qian H, Zakevicius J (2002) Pharmacological enhancement of hemi-gap-junctional currents in Xenopus oocytes. J Neurosci Methods 121:81–92

    Article  PubMed  CAS  Google Scholar 

  66. Bahima L, Aleu J, Elias M, Martin-Satue M, Muhaisen A, Blasi J, Marsal J, Solsona C (2006) Endogenous hemichannels play a role in the release of ATP from Xenopus oocytes. J Cell Physiol 206:95–102

    Article  PubMed  CAS  Google Scholar 

  67. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG (1996) Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–1030

    Article  PubMed  CAS  Google Scholar 

  68. Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    Article  PubMed  CAS  Google Scholar 

  69. John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    Article  PubMed  CAS  Google Scholar 

  70. Kondo RP, Wang SY, John SA, Weiss JN, Goldhaber JI (2000) Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes. J Mol Cell Cardiol 32:1859–1872

    Article  PubMed  CAS  Google Scholar 

  71. Romanello M, Pani B, Bicego M, D’Andrea P (2001) Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289:1275–1281

    Article  PubMed  CAS  Google Scholar 

  72. Stout C, Charles A (2003) Modulation of intercellular calcium signaling in astrocytes by extracellular calcium and magnesium. Glia 43:265–273

    Article  PubMed  Google Scholar 

  73. Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  74. Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    Article  PubMed  CAS  Google Scholar 

  75. De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH, Leybaert L (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18:34–46

    Article  PubMed  CAS  Google Scholar 

  76. Valiunas V (2002) Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119:147–164

    Article  PubMed  CAS  Google Scholar 

  77. Bader P, Weingart R (2004) Conductive and kinetic properties of connexin45 hemichannels expressed in transfected HeLa cells. J Membr Biol 199:143–154

    Article  PubMed  CAS  Google Scholar 

  78. Tong JJ, Ebihara L (2006) Structural determinants for the differences in voltage gating of chicken Cx56 and Cx45.6 gap-junctional hemichannels. Biophys J 91:2142–2154

    Article  PubMed  CAS  Google Scholar 

  79. Trexler EB, Bennett MV, Bargiello TA, Verselis VK (1996) Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci USA 93:5836–5841

    Article  PubMed  CAS  Google Scholar 

  80. Pfahnl A, Dahl G (1998) Localization of a voltage gate in connexin46 gap junction hemichannels. Biophys J 75:2323–2331

    Article  PubMed  CAS  Google Scholar 

  81. Jedamzik B, Marten I, Ngezahayo A, Ernst A, Kolb HA (2000) Regulation of lens rCx46-formed hemichannels by activation of protein kinase C, external Ca2+ and protons. J Membr Biol 173:39–46

    Article  PubMed  CAS  Google Scholar 

  82. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DD (2002) Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol 185:93–102

    Article  PubMed  CAS  Google Scholar 

  83. Zampighi GA, Loo DD, Kreman M, Eskandari S, Wright EM (1999) Functional and morphological correlates of connexin50 expressed in Xenopus laevis oocytes. J Gen Physiol 113:507–524

    Article  PubMed  CAS  Google Scholar 

  84. Zoidl G, Bruzzone R, Weickert S, Kremer M, Zoidl C, Mitropoulou G, Srinivas M, Spray DC, Dermietzel R (2004) Molecular cloning and functional expression of zfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina. J Biol Chem 279:2913–2921

    Article  PubMed  CAS  Google Scholar 

  85. Ebihara L, Berthoud VM, Beyer EC (1995) Distinct behavior of connexin56 and connexin46 gap junctional channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys J 68:1796–1803

    Article  PubMed  CAS  Google Scholar 

  86. Muller DJ, Hand GM, Engel A, Sosinsky GE (2002) Conformational changes in surface structures of isolated connexin 26 gap junctions. EMBO J 21:3598–3607

    Article  PubMed  CAS  Google Scholar 

  87. Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280:10646–10654

    Article  PubMed  CAS  Google Scholar 

  88. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ (2001) The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem 276:1020–1025

    Article  PubMed  CAS  Google Scholar 

  89. Nakazawa K, Sawa H, Ojima H, Ishii-Nozawa R, Takeuchi K, Ohno Y (2002) Size of side-chain at channel pore mouth affects Ca2+ block of P2X(2) receptor. Eur J Pharmacol 449:207–211

    Article  PubMed  CAS  Google Scholar 

  90. Bone LJ, Deschenes SM, Balice-Gordon RJ, Fischbeck KH, Scherer SS (1997) Connexin32 and X-linked Charcot-Marie-tooth disease. Neurobiol Dis 4:221–230

    Article  PubMed  CAS  Google Scholar 

  91. Bukauskas FF, Verselis VK (2004) Gap junction channel gating. Biochim Biophys Acta 1662:42–60

    Article  PubMed  CAS  Google Scholar 

  92. Srinivas M, Calderon DP, Kronengold J, Verselis VK (2006) Regulation of connexin hemichannels by monovalent cations. J Gen Physiol 127:67–75

    Article  PubMed  CAS  Google Scholar 

  93. Retamal MA, Froger N, Palacios-Prado N, Ezan P, Sáez PJ, Sáez JC, Giaume C (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J Neurosci 27:13781–13792

    Article  PubMed  CAS  Google Scholar 

  94. Orellana JA, Hernandez DE, Ezan P, Velarde V, Bennett MV, Giaume C, Sáez JC (2010) Hypoxia in high glucose followed by reoxygenation in normal glucose reduces the viability of cortical astrocytes through increased permeability of connexin 43 hemichannels. Glia 58:329–343

    PubMed  Google Scholar 

  95. Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Sáez PJ, Jiang JX, Naus CC, Sáez JC, Giaume C (2011) Amyloid {beta}-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977

    Article  PubMed  CAS  Google Scholar 

  96. Garre JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Sáez JC, Bennett MV, Abudara V (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci USA 107:22659–22664

    Article  PubMed  CAS  Google Scholar 

  97. De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R, Naus CC, Evans WH, Leybaert L (2009) Ca2+ regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187

    Article  PubMed  CAS  Google Scholar 

  98. Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    Article  PubMed  CAS  Google Scholar 

  99. Sánchez HA, Mese G, Srinivas M, White TW, Verselis VK (2010) Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome. J Gen Physiol 136:47–62

    Article  PubMed  CAS  Google Scholar 

  100. Schalper KA, Sánchez HA, Lee SC, Altenberg GA, Nathanson MH, Sáez JC (2010) Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 299:C1504–C1515

    Article  PubMed  CAS  Google Scholar 

  101. Christ GJ, Moreno AP, Melman A, Spray DC (1992) Gap junction-mediated intercellular diffusion of Ca2+ in cultured human corporal smooth muscle cells. Am J Physiol 263:C373–C383

    PubMed  CAS  Google Scholar 

  102. Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94:120–143

    Article  PubMed  CAS  Google Scholar 

  103. Rose B, Loewenstein WR (1975) Permeability of cell junction depends on local cytoplasmic calcium activity. Nature 254:250–252

    Article  PubMed  CAS  Google Scholar 

  104. De Mello WC (1975) Effect of intracellular injection of calcium and strontium on cell communication in heart. J Physiol 250:231–245

    PubMed  Google Scholar 

  105. Dahl G, Isenberg G (1980) Decoupling of heart muscle cells: correlation with increased cytoplasmic calcium activity and with changes of nexus ultrastructure. J Membr Biol 53:63–75

    Article  PubMed  CAS  Google Scholar 

  106. Spray DC, Bennett MV (1985) Physiology and pharmacology of gap junctions. Annu Rev Physiol 47:281–303

    Article  PubMed  CAS  Google Scholar 

  107. Sneyd J, Charles AC, Sanderson MJ (1994) A model for the propagation of intercellular calcium waves. Am J Physiol 266:C293–C302

    PubMed  CAS  Google Scholar 

  108. Hofer T (1999) Model of intercellular calcium oscillations in hepatocytes: synchronization of heterogeneous cells. Biophys J 77:1244–1256

    Article  PubMed  CAS  Google Scholar 

  109. Hofer T, Politi A, Heinrich R (2001) Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. Biophys J 80:75–87

    Article  PubMed  CAS  Google Scholar 

  110. Iacobas DA, Suadicani SO, Spray DC, Scemes E (2006) A stochastic two-dimensional model of intercellular Ca2+ wave spread in glia. Biophys J 90:24–41

    Article  PubMed  CAS  Google Scholar 

  111. Hofer AM (2005) Another dimension to calcium signaling: a look at extracellular calcium. J Cell Sci 118:855–862

    Article  PubMed  CAS  Google Scholar 

  112. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  PubMed  CAS  Google Scholar 

  113. Gomes P, Srinivas SP, Van Driessche W, Vereecke J, Himpens B (2005) ATP release through connexin hemichannels in corneal endothelial cells. Invest Ophthalmol Vis Sci 46:1208–1218

    Article  PubMed  Google Scholar 

  114. Gossman DG, Zhao HB (2008) Hemichannel-mediated inositol 1,4,5-trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular signaling. Cell Commun Adhes 15:305–315

    Article  PubMed  CAS  Google Scholar 

  115. Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001) Activation of connexin-43 hemichannels can elevate [Ca2+]i and [Na+]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33:2145–2155

    Article  PubMed  CAS  Google Scholar 

  116. Shintani-Ishida K, Uemura K, Yoshida K (2007) Hemichannels in cardiomyocytes open transiently during ischemia and contribute to reperfusion injury following brief ischemia. Am J Physiol Heart Circ Physiol 293:H1714–H1720

    Article  PubMed  CAS  Google Scholar 

  117. Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Hulser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817

    Article  PubMed  CAS  Google Scholar 

  118. Cao F, Eckert R, Elfgang C, Nitsche JM, Snyder SA, Hu DF, Willecke K, Nicholson BJ (1998) A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci 111:31–43

    PubMed  CAS  Google Scholar 

  119. Bootman MD, Berridge MJ, Taylor CW (1992) All-or-nothing Ca2+ mobilization from the intracellular stores of single histamine-stimulated HeLa cells. J Physiol 450:163–178

    PubMed  CAS  Google Scholar 

  120. Paemeleire K (2002) Calcium signaling in and between brain astrocytes and endothelial cells. Acta Neurol Belg 102:137–140

    PubMed  Google Scholar 

  121. Dobrowolski R, Sommershof A, Willecke K (2007) Some oculodentodigital dysplasia-associated Cx43 mutations cause increased hemichannel activity in addition to deficient gap junction channels. J Membr Biol 219:9–17

    Article  PubMed  CAS  Google Scholar 

  122. Herve JC (2007) Gap junction channels: from protein genes to diseases. Prog Biophys Mol Biol 94:1–4

    Article  PubMed  CAS  Google Scholar 

  123. George CH, Kendall JM, Campbell AK, Evans WH (1998) Connexin-aequorin chimerae report cytoplasmic calcium environments along trafficking pathways leading to gap junction biogenesis in living COS-7 cells. J Biol Chem 273:29822–29829

    Article  PubMed  CAS  Google Scholar 

  124. Brehm P, Lechleiter J, Smith S, Dunlap K (1989) Intercellular signaling as visualized by endogenous calcium-dependent bioluminescence. Neuron 3:191–198

    Article  PubMed  CAS  Google Scholar 

  125. Churchill GC, Louis CF (1998) Roles of Ca2+, inositol trisphosphate and cyclic ADP-ribose in mediating intercellular Ca2+ signaling in sheep lens cells. J Cell Sci 111(Pt 9):1217–1225

    PubMed  CAS  Google Scholar 

  126. Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  127. Leybaert L, Paemeleire K, Strahonja A, Sanderson MJ (1998) Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24:398–407

    Article  PubMed  CAS  Google Scholar 

  128. Paemeleire K, Martin PE, Coleman SL, Fogarty KE, Carrington WA, Leybaert L, Tuft RA, Evans WH, Sanderson MJ (2000) Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43, 32, or 26. Mol Biol Cell 11:1815–1827

    PubMed  CAS  Google Scholar 

  129. Suadicani SO, Cherkas PS, Zuckerman J, Smith DN, Spray DC, Hanani M (2010) Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol 6:43–51

    Article  PubMed  Google Scholar 

  130. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci USA 95:15735–15740

    Article  PubMed  CAS  Google Scholar 

  131. Arcuino G, Lin JH, Takano T, Liu C, Jiang L, Gao Q, Kang J, Nedergaard M (2002) Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci USA 99:9840–9845

    Article  PubMed  CAS  Google Scholar 

  132. Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16:255–257

    PubMed  CAS  Google Scholar 

  133. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickheit G, Filippov MA, Monyer H, Mammano F (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105:18770–18775

    Article  PubMed  CAS  Google Scholar 

  134. Leinonen P, Aaltonen V, Koskela S, Lehenkari P, Korkiamaki T, Peltonen J (2007) Impaired gap junction formation and intercellular calcium signaling in urinary bladder cancer cells can be improved by Go6976. Cell Commun Adhes 14:125–136

    Article  PubMed  CAS  Google Scholar 

  135. Jiang JX, Siller-Jackson AJ, Burra S (2007) Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front Biosci 12:1450–1462

    Article  PubMed  CAS  Google Scholar 

  136. Isakson BE, Olsen CE, Boitano S (2006) Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells. Respir Res 7:105

    Article  PubMed  CAS  Google Scholar 

  137. Orellana JA, Figueroa XF, Sánchez HA, Contreras-Duarte S, Velarde V, Sáez JC (2011) Hemichannels in the neurovascular unit and white matter under normal and inflamed conditions. CNS Neurol Disord Drug Targets 10:404–414

    Article  PubMed  CAS  Google Scholar 

  138. Bruzzone S, Guida L, Zocchi E, Franco L, De Flora A (2001) Connexin 43 hemi channels mediate Ca2  +  −regulated transmembrane NAD  +  fluxes in intact cells. FASEB J 15:10–12

    PubMed  CAS  Google Scholar 

  139. Dakin K, Zhao Y, Li WH (2005) LAMP, a new imaging assay of gap junctional communication unveils that Ca2+ influx inhibits cell coupling. Nat Methods 2:55–62

    Article  PubMed  CAS  Google Scholar 

  140. Dakin K, Li WH (2006) Local Ca2+ rise near store operated Ca2+ channels inhibits cell coupling during capacitative Ca2+ influx. Cell Commun Adhes 13:29–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the CONICYT 79090028 (to JAO); FONDECYT 1111033 (to JCS); FONDEF DO7I1086 (to JCS); and ANILLO ACT-71 (to JCS) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Orellana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Orellana, J.A., Sánchez, H.A., Schalper, K.A., Figueroa, V., Sáez, J.C. (2012). Regulation of Intercellular Calcium Signaling Through Calcium Interactions with Connexin-Based Channels. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_34

Download citation

Publish with us

Policies and ethics