Skip to main content

Core Principles and Concepts in Land-Use Modelling: A Literature Review

  • Chapter
  • First Online:
Land-Use Modelling in Planning Practice

Part of the book series: GeoJournal Library ((GEJL,volume 101))

Abstract

Simulation models of land use predict or describe land-use change over space and time. Recent overviews of land-use simulation models show an overwhelming amount of different types of models and applications (Heistermann, Muller & Ronneberger, 2006; Koomen, Stillwell, Bakema & Scholten, 2007; Verburg, Schot, Dijst & Veldkamp, 2004). Obviously, such models are simplifications of reality, but increasing computing power over the years has made it possible to incorporate more and more complexity in such models. This increased complexity, however, tends to obscure the theoretical foundations of land-use simulation models. This theoretical foundation relates to the core principles that are used to explain land-use change and the concepts that are applied to translate these principles into a functioning model of land-use change. An in-depth review of land-use change concepts, their underlying principles, applicability and translation into actual models does not exist to our knowledge. In this chapter we aim, therefore, to analyse the application of various theoretical concepts of land-use change that are used in modelling. This analysis is a first step to better understand the conceptual background of land-use change and the application of these concepts in computer simulation models. Based on this review we present some observations on important research issues in land-use modelling and suggest possible ways for further model improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Scopus is the largest abstract and citation database of research literature and quality web sources. It is designed to find information scientists need. Quick, easy and comprehensive, Scopus provides superior support for literature searches. Surf to http://www.scopus.com.

References

  • Agarwal, C., Green, G. M., Grove, J. M., Evans, T. P., & Schweik., C. M. (2001). A review and assessment of land-use change models: Dynamics of space, time, and human choice. Bloomington, IN: South-Burlington, Center for the Study of Institutions Population, and Environmental Change, Indiana University.

    Google Scholar 

  • Alcamo, J., Kreileman, G. J. J., Krol, M. S., & Zuidema, G. (1994a). Modeling the global society-biosphere-climate system: Part 1: Model description and testing. Water, Air, & Soil Pollution, 76(1–2), 1–35.

    Article  Google Scholar 

  • Alcamo, J. G. J., van den Born, A. F., Bouwman, B. J., de Haan, K., Klein Goldewijk, O., Klepper, J., et al. (1994b). Modeling the global society-biosphere-climate system: Part 2: Computed scenarios. Water, Air, & Soil Pollution, 76(1–2), 37–78.

    Article  Google Scholar 

  • Alonso, W. F. (1964). Location and land use. New Haven, CT: Harvard University Press.

    Google Scholar 

  • Arentze, T. A., & Timmermans, H. J. P. (2000). Albatross, a learning based transportation oriented simulation system. Eindhoven: Eindhoven University.

    Google Scholar 

  • Baker, W. L. (1989). A review of models of landscape change. Landscape Ecology, 2(2), 111–133.

    Article  Google Scholar 

  • Balmann, A. (1996). Farm-based modelling of regional structural change: A cellular automata approach. European Review of Agricultural Economics, 24, 85–108.

    Google Scholar 

  • Batty, M., & Xie, Y. (1994). From cells to cities. Environment & Planning B: Planning & Design, 21, S31.

    Article  Google Scholar 

  • Bella, I. E. (1971). A new competition model for individual trees. Forest Science, 17(3), 364–372.

    Google Scholar 

  • Benenson, I. (2007). Warning! The scale of land-use CA is changing! Computers, Environment and Urban Systems, 31(2), 107–113.

    Article  Google Scholar 

  • Borsboom-van Beurden, J. A. M., Boersma, W. T., Bouwman, A. A., Crommentuijn, L. E. M., Dekkers, J. E. C., & Koomen., E. (2005). Spatial impressions – Visualisation of future land use in the Netherlands. Bilthoven – The Netherlands, Netherlands Environmental Assesment Agency–550016003/2005.

    Google Scholar 

  • Briassoulis, H. (2000). Analysis of Land use change: Theoretical and modeling approaches. Morgantown, WV: West Virginia University.

    Google Scholar 

  • Brown, D. G., Page, S., Riolo, R., Zellner, M., & Rand, W. (2005). Path dependence and the validation of agent-based spatial models of land use. International Journal of Geographical Information Science, 19(2), 153–174.

    Article  Google Scholar 

  • Bürgi, M., Hersperger, A. M., & Schneeberger, N. (2005). Driving forces of landscape change – Current and new directions. Landscape Ecology, 19(8), 857–868.

    Article  Google Scholar 

  • Burnham, B. O. (1973). Markov intertemporal land use simulation model. Southern Journal of Agricultural Economics, 5(1), 253–258.

    Google Scholar 

  • Chomitz, K. M., & Gray, D. A. (1996). Roads, land use, and deforestation: A spatial model applied to Belize. World Bank Economic Review, 10(3), 487–512.

    Google Scholar 

  • Couclelis, H. (1985). Cellular worlds: A framework for modeling micro – macro dynamics. Environment and Planning A, 17(5), 585–596.

    Article  Google Scholar 

  • deMaris, A. (1992). Logit modeling: Practical applications, University of Iowa–07–086.

    Google Scholar 

  • de Nijs, T. C. M., de Niet, R., & Crommentuijn, L. (2004). Constructing land-use maps of the Netherlands in 2030. Journal of Environmental Management, 72(1–2), 35–42.

    Google Scholar 

  • Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Citron-Pousty, S., Fortin, M. J., et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25(5), 626–640.

    Article  Google Scholar 

  • Engelen, G., White, R., Uljee, I., & Drazan, P. (1995). Using cellular automata for integrated modelling of socio-environmental systems. Environmental Monitoring and Assessment, 34(2), 203–214.

    Article  Google Scholar 

  • Fearnside, P. M. (1996). Amazonian deforestation and global warming: Carbon stocks in vegetation replacing Brazil’s Amazon forest. Forest Ecology and Management, 80(1–3), 21–34.

    Article  Google Scholar 

  • Ferrand, N. (1996). Modelling and supporting multi-actor planning using multi-agents systems. Santa Barbara, CA: Third NCGIA Conference on GIS and Environmental Modelling.

    Google Scholar 

  • Fujita, M., Krugman, P., & Venables, A. J. (1999). The spatial economy. London: The MIT press.

    Google Scholar 

  • Gardner, M. (1970). Mathematical Games: The fantastic combinations of John Conway’s new solitaire game ‘life’. Scientific American, 223, 120–123.

    Article  Google Scholar 

  • Geertman, S., Hagoort, M., & Ottens, H. (2007). Spatial-temporal specific neighbourhood rules for cellular automata land-use modelling. International Journal of Geographical Information Science, 21(5), 547–568.

    Article  Google Scholar 

  • Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198(1–2), 115–126.

    Article  Google Scholar 

  • Hagoort, M. (2006). The Neighbourhood Rules. Land-use interaction, urban dynamics and cellular automata modeling (300p). PhD, Faculty of geosciences, Utrecht University, Utrecht.

    Google Scholar 

  • Heistermann, M., Muller, C., & Ronneberger, K. (2006). Land in sight?: Achievements, deficits and potentials of continental to global scale land-use modeling. Agriculture, Ecosystems & Environment, 114(2–4), 141–158.

    Article  Google Scholar 

  • Hilferink, M., & Rietveld, P. (1999). LAND USE SCANNER: An integrated GIS based model for long term projections of land use in urban and rural areas. Journal of Geographical Systems, 1(2), 155–177.

    Article  Google Scholar 

  • Hunt, J. D., Kriger, D. S., & Miller, E. J. (2004). Current operational urban land-use-transport modelling frameworks: A REVIEW. Transport Reviews, 25(3), 329–376.

    Article  Google Scholar 

  • Koomen, E., Loonen, W., & Hilferink, M. (2008). Climate-change adaptations in land-use planning; A scenario-based approach. In L. Bernard, A. Friis-Christensen, & H. Pundt (Eds.), The European information society; Taking geoinformation science one step further (pp. 261–282). Berlin: Springer.

    Google Scholar 

  • Koomen, E., & Stillwell, J. (2007). Modelling land-use change; Theories and methods. Chapter 1. In E. Koomen, J. Stillwell, A. Bakema, & H. J. Scholten (Eds.), Modelling land-use change; Progress and applications (pp. 1–21). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Koomen, E., J. Stillwell, A. Bakema, & H. J. Scholten, (Eds.). (2007). Modelling land-use change. Progress and applications. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Krugman, P. (1991). Geography and trade (Gaston Eyskens lecture series). Leuven: Leuven University Press.

    Google Scholar 

  • Krugman, P. (1999). The Role of Geography in Development. International Regional Science Review, 22(2), 142–161.

    Article  Google Scholar 

  • Kuijpers-Linde, M., Geurs, K. T., Knoop, J. M., Kuiper, R., Lagas, P., Ligtvoet, W., et al. (2007). Nederland Later, Tweede Duurzaamheidsverkenning, deel fysieke leefomgeving Nederland. Bilthoven.

    Google Scholar 

  • Lambin, E. F., Rounsevell, M. D. A., & Geist, H. J. (2000). Are agricultural land-use models able to predict changes in land-use intensity? Agriculture, Ecosystems & Environment, 82(1–3), 321–331.

    Article  Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269.

    Article  Google Scholar 

  • Langdon, W. B. (1998). Genetic programming and data structures (350p). MSc, University College, London .

    Google Scholar 

  • Le Page, C., Bousquet, F., Bakam, I., Bah, A., & Baron, C. (2000). CORMAS: A multiagent simulation toolkit to model natural and social dynamics at multiple scales. Wageningen: Workshop ‘The ecology of scales’.

    Google Scholar 

  • Lesschen, J. P., Verburg, P. H., & Staal, S. J. (2005). Statistical methods for analysing the spatial dimension of changes in land use and farming systems, International Livestock Research Institute LUCC Focus 3 Office.

    Google Scholar 

  • Li, X., & Yeh, A. G.-O. (2001). Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment and Planning A, 33(8), 1445–1462.

    Article  Google Scholar 

  • Liao, T. F. (1994). Interpreting probability models. Logit, Probit, and Other Generalized Linear Models, University of Iowa–07–101.

    Google Scholar 

  • Ligtenberg, A., Bregt, A. K., & Lammeren, Rv. (2001). Multi-actor-based land use modelling: Spatial planning using agents. Elsevier, 56, 21–33.

    Google Scholar 

  • Lopez, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe: A case in Morelia city, Mexico. Landscape and Urban Planning, 55, 271–285.

    Article  Google Scholar 

  • LUMOS (2005). Platform for land use modeling in the Netherlands. Lumospro. (2007). Project team website. http://www.lumospro.nl

  • Mas, J. F., Puig, H., Palacio, J. L., & Sosa-Lopez, A. (2004). Modelling deforestation using GIS and artificial neural networks. Environmental Modelling & Software, 19(5), 461–471.

    Article  Google Scholar 

  • Matthews, R., Gilbert, N., Roach, A., Polhill, G., & Gotts, N. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22, 1447–1459.

    Article  Google Scholar 

  • McGarigal, K., & Marks., B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Portland, OR: US, Department of Agriculture, Forest Service, Pacific Northwest Research Station-PNW-GTR–351.

    Google Scholar 

  • Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23(1), 39–61.

    Article  Google Scholar 

  • Moeckel, R., Schurmann, C., & Wegener, M. (2002). Microsimulation of land use. 42nd European Congress of The Regional Science Association. Dortmund: Institut fur Raumplanung, University of Dortmund.

    Google Scholar 

  • Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2), 151–157.

    Google Scholar 

  • Nelson, G. C., & Hellerstein, D. (1997). Do roads cause deforestation? Using satellite images in econometric analysis of land use. American Journal of Agricultural Economics, 79(1), 80–88.

    Article  Google Scholar 

  • Overmars, K. P., de Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164(2–3), 257–270.

    Article  Google Scholar 

  • Overmars, K. P., de Groot, T., & Huigen, M. G. A. (2007). Comparing inductive and deductive modeling of land use decisions: Principles, a model and an illustration from the Philippines. Human Ecology, 35, 439–452.

    Article  Google Scholar 

  • Parker, D. C., Berger, T., & Manson, S. M. (2001). Agent-based models of land-use and land-cover change. Adaptive agents, intelligence and emergent human organization: Capturing complexity through agent-based modelling. Irvine, CA: LUCC International Project Office.

    Google Scholar 

  • Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.

    Article  Google Scholar 

  • Pijanowski, B. C., Pithadia, S., Shellito, B. A., & Alexandridis, K. (2005). Calibrating a neural network-based urban change model for two metropolitan areas of the Upper Midwest of the United States. International Journal of Geographical Information Science, 19(2), 197–215.

    Article  Google Scholar 

  • Pinto, N. N., & Antunes, A. P. (2007). Cellular automata and urban studies: A literature survey. Architecture, City and Environment, 4, 471–486.

    Google Scholar 

  • Pontius, R. G., Boersma, W., Castella, J.-C., Clarke, K., De Nijs, T., Dietzel, C., et al. (2008). Comparing the input, output, and validation maps for several models of land change. Annals of Regional Science, 42(1), 11–37.

    Article  Google Scholar 

  • Pontius, R. G., Cornell, J. D., & Hall, C. A. S. (2001). Modeling the spatial pattern of land-use change with GEOMOD2: Application and validation for Costa Rica. Agriculture, Ecosystems & Environment, 85(1–3), 191–203.

    Article  Google Scholar 

  • Ricardo, D. (1817). On the Principles of Political Economy and Taxation, Library of Economics and Liberty.

    Google Scholar 

  • Scopus. (2008). The largest abstract and citation database of research literature and quality web sources.

    Google Scholar 

  • Silva, E. A., & Clarke, K. C. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6), 525–552.

    Article  Google Scholar 

  • Sinclair, R. (1967). Von Thunen and Urban Sprawl. Annals of the Association of American Geographers, 57(1), 72–87.

    Article  Google Scholar 

  • Skapura, D. (1996). Building neural networks. New York: ACM Press.

    Google Scholar 

  • Tobler, W. (1979). Cellular geography. In S. Gale & G. Olsson (Eds.), Philosophy in geography (pp. 379–386). Dordrecht: Reidel.

    Google Scholar 

  • Turner, B. L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., & Leemans., R. (1995). Land-Use and Land-Cover Change Science/Research Plan, International Human Dimensions Programme on Global Environmental Change-7.

    Google Scholar 

  • Veldkamp, A., & Fresco, L. O. (1996). CLUE: A conceptual model to study the conversion of land use and its effects. Ecological Modelling, 85(2–3), 253–270.

    Article  Google Scholar 

  • Verburg, P. H., de Koning, G. H. J., Kok, K., Veldkamp, A., & Bouma, J. (1999). A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecological Modelling, 116(1), 45–61.

    Article  Google Scholar 

  • Verburg, P. H., van Eck, J. R. R., de Nijs, T. C. M., Dijst, M. J., & Schot, P. (2004). Determinants of land-use change patterns in the Netherlands. Environment and Planning B: Planning and Design, 31(1), 125–150.

    Google Scholar 

  • Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: Current practice and research priorities. GeoJournal, 61, 309–324.

    Article  Google Scholar 

  • von Thünen, J. H. (1966). Isolated state: An English edition of Der isolierte Staat. New York: Pergamom Press.

    Google Scholar 

  • Waddell, P. (2002). UrbanSim: Modeling urban development for land use, transportation and environmental planning.

    Google Scholar 

  • Wagner, P., & Wegener, M. (2007). Urban land use, transport and environment models. disP, 3, 45–57.

    Article  Google Scholar 

  • Walker, R. (2004). Theorizing land-cover and land-use change: The case of tropical deforestation. International Regional Science Review, 27(3), 247–270.

    Article  Google Scholar 

  • Walsh, S. E., Soranno, P. A., & Rutledge, D. T. (2003). Lakes, Wetlands, and Streams as Predictors of land use/cover distribution. Environmental Management, 31(2), 198–214.

    Article  Google Scholar 

  • Wear, D. N., & Bolstad, P. (1998). Land-use changes in southern appalachian landscapes: Spatial analysis and forecast evaluation. Ecosystems, 1(6), 575–594.

    Article  Google Scholar 

  • White, R., & Engelen, G. (1994). Cellular dynamics and GIS: Modelling spatial complexity. Geographical Systems, 1, 237–253.

    Google Scholar 

  • White, R., & Engelen, G. (2000). High-resolution integrated modelling of the spatial dynamics of urban and regional systems. Computers, Environment and Urban Systems, 24(5), 383–400.

    Article  Google Scholar 

  • Wrigley, N. (1976). Introduction to the use of logit models in geography. Norwich: University of East Anglia–10.

    Google Scholar 

  • Wu, J., & Li, H. (2006). Concepts of scale and scaling. In J. Wu, K. B. Jones, H. Li, & O. L. Loucks (Eds.), Scaling and uncertainty analysis in ecology: Methods and applications. New York: Springer, p. 6.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas van Schrojenstein Lantman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

van Schrojenstein Lantman, J., Verburg, P.H., Bregt, A., Geertman, S. (2011). Core Principles and Concepts in Land-Use Modelling: A Literature Review. In: Koomen, E., Borsboom-van Beurden, J. (eds) Land-Use Modelling in Planning Practice. GeoJournal Library, vol 101. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1822-7_3

Download citation

Publish with us

Policies and ethics