Skip to main content

Transgenic Date Palm

  • Chapter
  • First Online:
Date Palm Biotechnology

Abstract

Modern biotechnology creates unprecedented opportunities to improve agricultural productivity, decrease our dependence on potentially-harmful chemical pesticides and enhance our ability to produce food. The date palm has a considerable socioeconomic value and is mentioned repeatedly with appreciation in the Bible and Quran. The tree plays a key role in the Arabic nations and ought to gain special attention from Arabic governments and scientists. The date palm is the most suitable tree for cultivation in arid and semiarid regions of the world due to its low water demand, tolerance to high temperature, drought and salinity. Unfortunately, there are many biotic stresses that hinder expansion of date palm cultivation, productivity and accordingly date palm revenue. A literature search shows that most publications have been focused on in vitro propagation, and molecular characterization of date palm cultivars and tissue culture-derived plants. Research aimed at developing date palm transformation systems is lacking and date palm transformation seems to be in its infancy. The tree is a target host for several pests and diseases, so it is necessary to focus on its in vitro propagation and genetic engineering to overcome some of these problems. This review highlights ongoing efforts in date palm transformation and the expected role of genetic transformation in date palm improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaouine M (1998) The application of biotechnology to date palm. In: Ives C, Bedford B (eds.) Agricultural biotechnology in international development. CABI, Wallingford, pp 133–146

    Google Scholar 

  • Abdullah R, Chari C, Yap WSP, Yeun LH (2003) Transgenic oil palm with stably integrated CpTI gene confers resistance to bagworm larvae. In: Vasil IK (ed.) Plant biotechnology 2002 and beyond. Kluwer, Dordrecht, pp 163–165

    Google Scholar 

  • Abdullah R, Alizah Z, Wee Y et al (2005) Immature embryo: a useful tool for oil palm genetic transformation studies. Electr J Biotechnol 8. ISSN 0717 3458. http://www.ejbiotechnology.info/content/vol8/issue1/full/1/

  • Ajlan AM, Shawir MS, Abo-El-Saad MM et al (2000) Laboratory evaluation of certain ­organophosphorus insecticides against the red palm weevil, Rhynchophorus ferrugineus (Olivier). Sci J King Faisal Univ Basic Appl Sci 1:15–26

    Google Scholar 

  • Al-Khalifah N, Askari E (2003) Molecular phylogeny of date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia by DNA fingerprinting. Theor Appl Genet 107:1266–1270

    Article  PubMed  CAS  Google Scholar 

  • Al Khayri JM (2003) In vitro germination of somatic embryos in date palm: effect of auxin concentration and strength of MS salts. Curr Sci 84:5–10

    Google Scholar 

  • Al-Khayri JM (2005) Date palm Phoenix dactylifera L. In: Jain SM, Gupta PK (eds.) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 309–319

    Chapter  Google Scholar 

  • Al-Khayri JM (2007) Date palm Phoenix dactylifera L. micropropagation. In: Jain SM, Häggman H (eds.) Protocols for micropropagation of woody trees and fruits. Springer, Dordrecht, pp 509–526

    Chapter  Google Scholar 

  • Al-Wasel AS (2001) Somaclonal variations in tissue culture-derived date palm (Phoenix dactylifera) trees. In: The second international conference on date palm, Al-Ain, 25–27 Mar 2001, p 591

    Google Scholar 

  • Barton K, Whiteley H, Young S (1987) Bacillus thuringiensis–endotoxin in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Beetham PR, Kipp PR, Sawycky ZL (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Nat Acad Sci USA 96:8774–8778

    Article  PubMed  CAS  Google Scholar 

  • Bekheet SA, Taha HS, Saker MM (2001) Factors affecting in vitro multiplication of date palm. Biol Plant 44:431–433

    Article  Google Scholar 

  • Bekheet SA, Taha HS, Saker MM, Moursy HA (2002) A synthetic seed system of date palm through somatic embryogenesis encapsulation. Ann Agric Sci Ain Shams Univ Cairo 47:325–337

    Google Scholar 

  • Bhansali R, Kaul R, Dass H (1988) Mass cloning of date palm plantlets through repetitive somatic embryogenesis. J Plant Anat Morph 5:73–79

    Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Ann Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  Google Scholar 

  • Boller T, Gehri A, Mauch F, Vogeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties and possible function. Planta 157:22–31

    Article  CAS  Google Scholar 

  • Bouguedoura N (1991) Connaissance de la morphogenèse du palmier dattier (Phoenix dactylifera L.). Etude in situ et in vitro du développement morphogénétique des appareils végétatif et reproducteur. Thèse de Doctorat, Université des Sciences et de la Technologie Houari Boumediene, Alger

    Google Scholar 

  • Bouguedoura N, Michaux-Ferriere N, Bompar JL (1990) Comportement in vitro de bourgeons axillaires de type indetermine du palmier dattier (Phoenix dactylifera). Can J Bot 68:2004–2009

    Google Scholar 

  • Carpenter JB, Klotz LJ (1966) Diseases of the date palm. Date Growers Inst Rep 43:15–21

    Google Scholar 

  • Chaibi N, Ben Abdallah A, Harzallah H, Lepoivre P (2002) Potentialités androgénétiques du palmier dattier Phoenix dactylifera L. et culture in vitro d’anthères. Biotechnol Agron Soc Environ 6:201–207

    Google Scholar 

  • Cheng M, Fry JE, Peng S et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM et al (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Article  Google Scholar 

  • Cho H, Choi K, Yamashita M et al (1995) Introduction and expression of the Streptomyces cholestrol oxidase gene (ChoA), a potent insecticidal protein active against boll weevil larvae, into tobacco cells. Appl Microbiol Biotechnol 44:133–138

    Article  CAS  Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M et al (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689

    PubMed  Google Scholar 

  • Djerbi M (1988) Les maladies du palmier dattier. Projet régional de lutte contre le Bayoud, FAO, Alger

    Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB et al (2008) Genera palmarum. The evolution and classification of palms. Royal botanic gardens, Kew

    Google Scholar 

  • El Bellaj M, El Jaafari S, El Hadrami I (2000) IAA-oxidase: regulator and potential marker of somatic embryogenesis in date palm (Phoenix dactylifera L.). Cah Agron 9:193–195

    Google Scholar 

  • El Hadrami E, El Hadrami A (2009) Breeding date palm. In: Jain SM, Priyadarshan PM (eds.) Breeding plantation tree crops: tropical species. Springer, New York, pp 191–216

    Chapter  Google Scholar 

  • El-Hennawy H, Wally Y (1978) Date palm (Phoenix dactylifera L.), bud differentiation in vitro. Egypt J Hortic 5:81–82

    Google Scholar 

  • Elshibli S, Korpelainen H (2008) Microsatellite markers reveal high genetic diversity in date palm (Phoenix dactylifera L.) germplasm from Sudan. Genetics 134:251–260

    CAS  Google Scholar 

  • Finer JJ (2010) Plant nuclear transformation. In: Kempken F, Jung C (eds.) Genetic modification of plants: biotechnology in agriculture and forestry. Springer, Berlin

    Google Scholar 

  • Fki L (2005) Application des suspensions cellulaires embryogènes au clonage et à l’amélioration {in vitro} du palmier dattier. Faculté des Sciences de Sfax-Tunisie

    Google Scholar 

  • Fki L, Masmoudi R, Drira N, Rival A (2003) An optimized protocol for plant regeneration from embryogenic suspension cultures of date palm, Phoenix dactylifera L., cv. Deglet Nour. Plant Cell Rep 21:517–524

    PubMed  CAS  Google Scholar 

  • Fromm MJ, Morrish F, Armstrong C et al (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Tech 8:833–839

    Article  CAS  Google Scholar 

  • Gheysen G, Angenon G, Van Montagu M (1998) Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In: Lindsey K (ed.) Transgenic plant research. Harwood Academic, Amsterdam, pp 1–33

    Google Scholar 

  • Ghulam Kadir AP, Chowdhury MKU, Saleh NM (1998) Physical parameters affecting transient GUS gene expression in oil palm (Elaeis guineensis Jacq.) using the biolistic device. Ind Crops Prod 6:41–50

    Google Scholar 

  • Goedeke S, Hensel G, Kapusi E et al (2007) Transgenic barley in fundamental research and biotechnology. Transgenic Plant J 1:104–117

    Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  PubMed  CAS  Google Scholar 

  • Gorret N, bin Rosli SK, Oppenheim SF et al (2004) Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. J Biotechnol 108:253–263

    Article  PubMed  CAS  Google Scholar 

  • Habashi AA, Kaviani M, Mousavi A, Khoshkam S (2008) Transient expression of β-glucuronidase reporter gene in date palm (Phoenix dactylifera L.) embryogenic calli and somatic embryos via microprojectile bombardment. J Food Agric Environ 6:160–163

    Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG et al (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Horsch RR, Fraley S, Rogers J et al (1987) Agrobacterium-mediated transformation of plants. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds.) Plant tissue and cell culture. Alan R. Liss, New York, pp 317–329

    Google Scholar 

  • Iida A, Seki M, Kamada M et al (1990) Gene transfer into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theor Appl Genet 80:813–816

    Article  Google Scholar 

  • Ishida Y, Saito H, Ohta YS et al (1996) High efficiency transformation of maize )Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Jain SM (2002) A review of induction of mutations in fruits of tropical and subtropical regions. Acta Hortic 575:295–302

    Google Scholar 

  • Jain SM (2006) Radiation-induced mutations for developing bayoud disease resistant date palm in North Africa. Proceedings of the international workshop on true-to-typeness of date palm tissue culture-derived plants, Morocco, 23–25 May 2005, pp 31–41

    Google Scholar 

  • Jain SM (2007) Recent advances in date palm tissue culture and mutagenesis. Acta Hortic 736:205–211

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS Fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3909

    PubMed  CAS  Google Scholar 

  • King SP, Kasha KJ (1994) Optimizing somatic embryogenesis and particle bombardment of barley (Hordeum vulgare L.) immature embryos. In Vitro Cell Dev Biol 30:117–123

    Article  Google Scholar 

  • Klein TM, Gradziel T, Fromm ME, Sanford JC (1988) Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Bio/Tech 6:559–563

    Article  CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biotechnol Mol Biol 27:887–900

    Article  CAS  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G et al (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    Article  PubMed  CAS  Google Scholar 

  • Laville E (1973) Les maladies du dattier. In: Munier P (ed.) Le palmier dattier. G.P. Maisonneuve and Larose, Paris, pp 95–108

    Google Scholar 

  • Lee M-P, Yeun L-H, Abdallah R (2006) Expression of Bacillus thuringiensis insecticidal protein gene in transgenic oil palm. Electr J Biotechnol [online] 9. ISSN 0717–3458. http://www.ejbiotechnology.info/content/vol9/issue3/full/3/index.html

  • Li YH, Trembley FM, Seguin A (1994) Transient transformation of pollen and embryogenic tissues of white spruce (Picea glauca Moench) resulting from microprojectile bombardment. Plant Cell Rep 13:661–665

    Article  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K et al (1995) Genetic engineering of rice for resistance to sheath blight. Biotechnol 13:686–691

    Article  CAS  Google Scholar 

  • Louvet J, Toutain G (1973) Recherches sur les fusarioses VIII. Nouvelles observations sur la fusariose du palmier dattier et précisions concernant la lutte. Ann Phytopathol 4:35–52

    Google Scholar 

  • Malençon G (1934) Nouvelles observations concernant l’étiologie du Bayoud. C R Acad Sci Paris 19:1259–1262, (Abstract in Rev App Mycol 13: 505)

    Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Tech 6:923–926

    Article  Google Scholar 

  • Morton R, Schroder H, Bateman K et al (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum stavium) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. PNAS 97:3820–3825

    Article  PubMed  CAS  Google Scholar 

  • Mousavi M, Mousavi A, Habashi AK et al (2009) Optimization of physical and biological parameters for transient expression of uidA gene in embryogenic callus of date palm (Phoenix ­dactylifera L.) via particle bombardment. Afr J Biotechnol 8:3721–3730

    CAS  Google Scholar 

  • Parveez GKA, Chowdhury MKU, Norihan MS (1997) Biological parameters affecting transient GUS gene expression in oil palm (Elaeis guineensis Jacq.) embryogenic calli via microprojectile bombardment. Ind Crops Prod 8:17–27

    Article  Google Scholar 

  • Parveez GKA, Chowdhury MKU, Norihan MS (1998) Physical parameters affecting transient GUS gene expression in oil palm (Elaeis guineensis Jacq.) using the biolistic device. Ind Crops Prod 6:41–50

    Article  Google Scholar 

  • Paszkowski J, Shillito RD, Saul M et al (1984) Direct gene transfer to plants. EMBO J 3:2717–2722

    PubMed  CAS  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Tech 8:535–542

    Article  CAS  Google Scholar 

  • Potrykus I, Paszkowski J, Saul MW et al (1987) Direct gene transfer to plants: facts and future. In: Green CE, Somers DA, Hackett WT, Biesboer DD (eds.) Plant tissue and cell culture. Alan R. Liss, New York, pp 289–302

    Google Scholar 

  • Poulain C, Rhiss A, Beauchesne G (1979) Multiplication vegetative en culture in vitro du palmier-dattier (Phoenix dactylifera L.). C R Seanc Acad Agric Fr 11:1151–1154

    Google Scholar 

  • Purseglove JW (1972) Tropical crops: monocotyledonous 2. Wiley, New York

    Google Scholar 

  • Reynolds JF, Murashige T (1979) Asexual embryogenesis in callus cultures of palms. In Vitro 15:383–387

    Article  Google Scholar 

  • Ritala M, Monnonen L, Aspegren K et al (1993) Stable transformation of barley tissue culture by particle bombardment. Plant Cell Rep 12:435–440

    Article  CAS  Google Scholar 

  • Roy M, Jain RK, Rohila JS, Wu R (2000) Production of agronomically superior transgenic rice plants using Agrobacterium-transformation methods: present status and future perspectives. Curr Sci 79:954–960

    CAS  Google Scholar 

  • Saker M, Moursy H (2003) Transgenic date palm: a new era in date palm biotechnology. In: Proceeding of the international conference on date palm, King Saud University, Qaseem, 16–19 Sept

    Google Scholar 

  • Saker M, Ghareeb HA (2007) Factors influencing transient expression of Agrobacterium–mediated transformation of GUS gene in embryogenic callus of date palm. Fourth symposium on date palm in Saudi Arabia. King Faisal Univ, Al-Hassa, 5–8 May 2007

    Google Scholar 

  • Saker M, Bekheet S, Taha H et al (2000) Detection of somaclonal variations in tissue culture-derived date palm plants using isozyme analysis and RAPD fingerprints. Biol Plant 43:347–351

    Article  CAS  Google Scholar 

  • Saker M, Adawy S, Mohamed A et al (2006a) Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol Plant 50:198–204

    Article  CAS  Google Scholar 

  • Saker M, Allam MA, Abd EL-Zaher H et al. (2006b)RAPD analysis of semi-dry Egyptian date palm during somatic embryogenesis. First Egyptian-Jordanian conference on biotechnology, 11–14 Dec 2006, pp 92–103

    Google Scholar 

  • Saker M, Allam MA, Goma AH et al (2007) Optimization of some factors affecting genetic transformation of semi-dry Egyptian date palm cultivar (Sewi) using particle bombardment. J Genet Eng Biotechnol 5:1–6

    Google Scholar 

  • Saker M, Ghareeb H, Kumlehn J (2009) Factors influencing transient expression of Agrobacterium-mediated transformation of GUS gene in embryogenic callus of date palm. Adv Hortic Sci 23:150–157

    Google Scholar 

  • Salama HSM, Saker M (2002) DNA fingerprints of three different forms of the red palm weevil collected from Egyptian date palm orchards. Arch Phytopathol Plant Prot 35:99–306

    Article  Google Scholar 

  • Sanford J, Smith FD, Russel A (1993) Optimizing the biolistic process for different biological applications. Method Enzymol 217:483–509

    Article  CAS  Google Scholar 

  • Schroeder E, Gollasch S, Moore A et al (1995) Bean [alpha]-Amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum). Plant Physiol 107:1233–1239

    PubMed  CAS  Google Scholar 

  • Shaheen MA (1990) Propagation of date palm through tissue culture: a review and an interpretation. Ann Agric Sci Ain Shams Univ Cairo 35:895–909

    Google Scholar 

  • Sharma HC, Sharma KK, Seetharama N, Ortiz R (2000) Prospects for using transgenic resistance to insects in crop improvement. Electr J Biotechnol 3. http://www.ejbiotechnology.info/content/vol3/issue2/full/3/

  • Sharma HC, Crouch JH, Sharma KK et al (2002) Applications of biotechnology for crop ­improvement: prospects and constraints. Plant Sci 63:381–395. http://dx.doi.org/10.1016/S0168-9452(02)00133-4

    Google Scholar 

  • Somers DA, Rines HW, Gu W et al (1992) Fertile, transgenic oat plants. Bio/Tech 10:1589–1594

    Article  CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Songstad DD, Somers DA, Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tissue Organ Cult 40:1–15

    Article  CAS  Google Scholar 

  • Tackholm V, Drar M 1973 (1950) Flora of Egypt, vol II, Otto Koeltz Antiquariat, Reprint

    Google Scholar 

  • Tingay S, McElroy D, Kalla R et al (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Tisserat B (1979) Propagation of date palm (Phoenix dactylifera L.) in vitro. J Exp Bot 30:1275–1283

    Article  CAS  Google Scholar 

  • Tisserat B (1982) Factors involved in the production of plantlets from date palm callus cultures. Euphytica 31:201–214

    Article  Google Scholar 

  • Toutain G (1967) Le palmier dattier: culturer et production. Alawam 15:37–45

    Google Scholar 

  • Vain P, De Buyser J, Bui Trang V et al (1995) Foreign gene delivery into monocotyledonous species. Biotechnol Adv 13:653–671

    Article  PubMed  CAS  Google Scholar 

  • Valencia A, Bustillo AE, Ossa GE, Chrispeels MJ (2000) Alpha-amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biotechnol Mol Biol 30:207–213

    Article  CAS  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Tech 10:667–674

    Article  CAS  Google Scholar 

  • Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed  CAS  Google Scholar 

  • Zaid A, Hughes H (1995) Water loss and polyethylene glycol-mediated acclimatization of in vitro grown seedlings of 5 cultivars of date palm (Phoenix dactylifera L.) plantlets. Plant Cell Rep 14:385–388

    Article  CAS  Google Scholar 

  • Zaid A, Tisserat B (1983) In vitro shoot tip differentiation in Phoenix dactylifera L. Date Palm J 2:163–182

    CAS  Google Scholar 

  • Zaid A, Arias-Jiménez E (2002) Date palm cultivation. Rev 1. Plant production and protection paper 156, FAO, Rome

    Google Scholar 

  • Zhu TD, Peterson DJ, Tagliani L et al (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Nat Acad Sci USA 96:8768–8773

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author express his thanks and appreciation to Dr. Tarek Kapeil (Botany Dept., Faculty of Science, Cairo University) and A. Researcher Mai A. Allam (Plant Biotechnology Dept., National Research Center, Egypt) for their so kind cooperation and providing me with information on origin of date palm and date palm tissue culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Saker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saker, M.M. (2011). Transgenic Date Palm. In: Jain, S., Al-Khayri, J., Johnson, D. (eds) Date Palm Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1318-5_30

Download citation

Publish with us

Policies and ethics