Skip to main content

Structure and Bonding in Molecular Vanadium Oxides: From Templates via Host–Guest Chemistry to Applications

  • Chapter
  • First Online:
Polyoxometalate-Based Assemblies and Functional Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 176))

Abstract

Molecular vanadium oxides are a structurally and chemically versatile sub-class of polyoxometalates. Fundamental concepts of their formation, templating mechanism and aggregation under aqueous and non-aqueous conditions are presented. Details about different template classes and their consequences on the vanadate reactivity are discussed together with concepts of linking vanadates into supramolecular architectures using various linkages. The final section briefly describes major applications of vanadium oxide clusters in (photo)catalysis, magnetism and molecular nanostructure design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Johnson GK, Murman RK, Bowman B (1985) Isotopic oxygen exchange rates between [V18O42]12− and water. Transit Met Chem 10(5):181–184

    Article  CAS  Google Scholar 

  2. Casey WH, Rustad JR (2016) Pathways for oxygen-isotope exchange in two model oxide clusters. New J Chem 40(2):898–905. The Royal Society of Chemistry

    Article  CAS  Google Scholar 

  3. Keggin JF (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc A Math Phys Eng Sci 144(851):75–100

    Article  CAS  Google Scholar 

  4. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Heidelberg, 180 pp

    Book  Google Scholar 

  5. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed 30(1):34–48

    Article  Google Scholar 

  6. Grabau M, Forster J, Heussner K, Streb C (2011) Synthesis and theoretical Hirshfeld analysis of a supramolecular heteropolyoxovanadate architecture. Eur J Inorg Chem 2011(11):1719–1724

    Article  Google Scholar 

  7. Aureliano M, Ohlin CA, Vieira MO, Marques MPM, Casey WH, Batista de Carvalho LAE (2016) Characterization of decavanadate and decaniobate solutions by Raman spectroscopy. Dalt Trans 45(17):7391–7399. The Royal Society of Chemistry

    Article  CAS  Google Scholar 

  8. Forster J, Rösner B, Fink RH, Nye LC, Ivanovic-Burmazovic I, Kastner K, et al. (2013) Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chem Sci 4(1):418–424

    Article  CAS  Google Scholar 

  9. Müller A, Sessoli R, Krickemeyer E, Bögge H, Meyer J, Gatteschi D, et al. (1997) Polyoxovanadates: high-nuclearity spin clusters with interesting host-guest systems and different electron populations. synthesis, spin organization, magnetochemistry, and spectroscopic studies. Inorg Chem 36(23):5239–5250

    Article  Google Scholar 

  10. Wutkowski A, Niefind F, Näther C, Bensch W (2011) A new mixed-valent high nuclearity polyoxovanadate cluster based on the {V18O42} archetype. Zeitschrift fur Anorg und Allg Chemie 637(14-15):2198–2204

    Article  CAS  Google Scholar 

  11. Hasenknopf B, Delmont R, Herson P, Gouzerh P (2002) Anderson-type heteropolymolybdates containing tris(alkoxo) ligands: synthesis and structural characterization. Eur J Inorg Chem 5:1081–1087

    Article  Google Scholar 

  12. Long D-L, Song Y-F, Wilson EF, Kögerler P, Guo S-X, Bond AM, et al. (2008) Capture of periodate in a {W18O54} cluster cage yielding a catalytically active polyoxometalate [H3W18O56(IO6)]6− embedded with high-valent iodine. Angew Chem Int Ed 47(23):4384–4387. WILEY-VCH

    Article  CAS  Google Scholar 

  13. Yan J, Long D-L, Wilson EF, Cronin L (2009) Discovery of heteroatom-“Embedded” Te⊂{W18O54} nanofunctional polyoxometalates by use of cryospray mass spectrometry. Angew Chem Int Ed 48(24):4376–4380. WILEY-VCH

    Article  CAS  Google Scholar 

  14. Ichida H, Nagai K, Sasaki Y, Pope MT (1989) Heteropolyvanadates containing two and three manganese(IV) ions: unusual structural features of Mn2V22O6410- and Mn3V12O40H35. J Am Chem Soc 111(2):586–591

    Article  CAS  Google Scholar 

  15. Inami S, Nishio M, Hayashi Y, Isobe K, Kameda H, Shimoda T (2009) Dinuclear manganese and cobalt complexes with cyclic polyoxovanadate ligands: synthesis and characterization of [Mn2V10O30]6– and [Co2(H2O)2V10O30]6–. Eur J Inorg Chem 2009(34):5253–5258

    Google Scholar 

  16. Kurata T, Uehara A, Hayashi Y, Isobe K (2005) Cyclic polyvanadates incorporating template transition metal cationic species: synthesis and structures of hexavanadate [PdV6O18]4−, octavanadate [Cu2V8O24]4−, and decavanadate [Ni4V10O30(OH)2(H2O)6]4−. Inorg Chem 44(7):2524–2530

    Article  CAS  Google Scholar 

  17. Nishio M, Inami S, Hayashi Y (2013) Early-lanthanide complexes with all-inorganic macrocyclic polyoxovanadate ligands. Eur J Inorg Chem 10–11:1876–1881

    Article  Google Scholar 

  18. Nishio M, Inami S, Katayama M, Ozutsumi K, Hayashi Y (2012) Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy. Inorg Chem 51(2):784–793

    Article  CAS  Google Scholar 

  19. Klemperer WG, Marquart TA, Yaghi OM (1992) New directions in polyvanadate chemistry: from cages and clusters to baskets, belts, bowls, and barrels. Angew Chem Int Ed Engl 31(1):49–51. Hüthig & Wepf

    Article  Google Scholar 

  20. Müller A, Reuter H, Dillinger S (1995) Supramolecular inorganic chemistry: small guests in small and large hosts. Angew Chem Int Ed Engl 34(21):2328–2361

    Article  Google Scholar 

  21. Müller A, Krickemeyer E, Penk M, Walberg H-J, Bögge H (1987) Spherical mixed-valence[V15O36]5⊖, an example from an unusual cluster family. Angew Chem Int Ed Engl 26(10):1045–1046. Hüthig & Wepf

    Article  Google Scholar 

  22. Kastner K, Margraf JT, Clark T, Streb C (2014) A molecular placeholder strategy to access a family of transition-metal-functionalized vanadium oxide clusters. Chemistry 20(38):12269–12273

    Article  CAS  Google Scholar 

  23. Kastner K, Forster J, Ida H, Newton GN, Oshio H, Streb C (2015) Controlled reactivity tuning of metal-functionalized vanadium oxide clusters. Chemistry 21(21):7686–7689

    Article  CAS  Google Scholar 

  24. Chen L, Jiang F, Lin Z, Zhou Y, Yue C, Hong M (2005) A basket tetradecavanadate cluster with blue luminescence. Am Chem Soc 127(24):8588–8589

    Article  CAS  Google Scholar 

  25. Zhang C-D, Liu S-X, Gao B, Sun C-Y, Xie L-H, Yu M, et al. (2007) Hybrid materials based on metal–organic coordination complexes and cage-like polyoxovanadate clusters: synthesis, characterization and magnetic properties. Polyhedron 26(7):1514–1522

    Article  CAS  Google Scholar 

  26. Pan C-L, Xu J-Q, Li G-H, Chu D-Q, Wang T-G (2003) A three-dimensional framework of novel vanadium clusters bridged by [Ni(en)2]2+: Ni(en)3{VIV 11VV 5O38Cl [Ni(en)2]3}·8.5H2O. Eur J Inorg Chem 2003(8):1514–1517. WILEY-VCH

    Article  Google Scholar 

  27. Zhang L, Schmitt W (2011) From platonic templates to Archimedean solids: successive construction of nanoscopic {V16As8}, {V16As10}, {V20As8}, and {V24As8} polyoxovanadate cages. J Am Chem Soc 133(29):11240–11248

    Article  CAS  Google Scholar 

  28. Breen JM, Schmitt W (2008) Hybrid organic-inorganic polyoxometalates: functionalization of VIV/VV nanosized clusters to produce molecular capsules. Angew Chem 120(36):7010–7014

    Article  Google Scholar 

  29. Tucher J, Peuntinger K, Margraf JT, Clark T, Guldi DM, Streb C (2015) Template-dependent photochemical reactivity of molecular metal oxides. Chemistry 21(24):8716–8719

    Article  CAS  Google Scholar 

  30. Tucher J, Nye LC, Ivanovic-Burmazovic I, Notarnicola A, Streb C (2012) Chemical and photochemical functionality of the first molecular bismuth vanadium oxide. Chemistry 18(35):10949–10953

    Article  CAS  Google Scholar 

  31. Tucher J, Streb C (2014) Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster. Beilstein J Nanotechnol 5:711–716

    Article  CAS  Google Scholar 

  32. Streb C (2012) New trends in polyoxometalate photoredox chemistry: from photosensitisation to water oxidation catalysis. Dalt Trans 41(6):1651–1659

    Article  CAS  Google Scholar 

  33. Nishiyama Y, Nakagawa Y, Mizuno N (2001) High turnover numbers for the catalytic selective epoxidation of alkenes with 1 atm of molecular oxygen. Angew Chem Int Ed Engl 40(19):3639–3641

    Article  CAS  Google Scholar 

  34. Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49(8):3594–3601

    Article  CAS  Google Scholar 

  35. Sartorel A, Carraro M, Scorrano G, Bonchio M (2011) Water oxidation catalysis by molecular metal-oxides. Energy Procedia 22:78–87

    Article  Google Scholar 

  36. Lv H, Geletii YV, Zhao C, Vickers JW, Zhu G, Luo Z, et al. (2012) Polyoxometalate water oxidation catalysts and the production of green fuel. Chem Soc Rev 41(22):7572–7589

    Article  CAS  Google Scholar 

  37. Forster J, Rosner B, Khusniyarov MM, Streb C, Rösner B, Khusniyarov MM, et al. (2011) Tuning the light absorption of a molecular vanadium oxide system for enhanced photooxidation performance. Chem Commun 47(11):3114–3116

    Article  CAS  Google Scholar 

  38. Seliverstov A, Streb C (2014) A new class of homogeneous visible-light photocatalysts: molecular cerium vanadium oxide clusters. Chemistry 20(31):9733–9738

    Article  CAS  Google Scholar 

  39. Seliverstov A, Streb C (2014) Chirality meets visible-light photocatalysis in a molecular cerium vanadium oxide cluster. Chem Commun 50(15):1827–1829

    Article  CAS  Google Scholar 

  40. Schwarz B, Forster J, Goetz MK, Yücel D, Berger C, Jacob T, et al. (2016) Visible-light-driven water oxidation by a molecular manganese vanadium oxide cluster. Angew Chem Int Ed 55(21):6329–6333

    Article  CAS  Google Scholar 

  41. Tucher J, Nye LC, Ivanovic-Burmazovic I, Notarnicola A, Streb C (2012) Chemical and photochemical functionality of the first molecular bismuth vanadium oxide. Chem Eur J 18(35):10949–10953

    Article  CAS  Google Scholar 

  42. Daniel C, Hartl H (2009) A mixed-valence VIV/VV alkoxo-polyoxovanadium cluster series [V6O8(OCH3)11]n+/−: exploring the influence of a μ-oxo ligand in a spin frustrated structure. J Am Chem Soc 131(14):5101–1514

    Google Scholar 

  43. Mu A, Peters F, Pope MT, Gatteschi D (1998) Polyoxometalates: very large clusters-nanoscale magnets. Chem Rev 2665(98):239–271

    Google Scholar 

  44. Monakhov KY, Bensch W, Kogerler P (2015) Semimetal-functionalised polyoxovanadates. Chem Soc Rev 44(23):8443–8483. The Royal Society of Chemistry

    Article  CAS  Google Scholar 

  45. Monakhov KY, Linnenberg O, Kozłowski P, van Leusen J, Besson C, Secker T, et al. (2015) Supramolecular recognition influences magnetism in [X@HVIV 8 VV 14O54]6− self-assemblies with symmetry-breaking guest anions. Chemistry 21(6):2387–2397

    Article  CAS  Google Scholar 

  46. Bassil BS, Dickman MH, Römer I, Von Der Kammer B, Kortz U (2007) The tungstogermanate [Ce20Ge10W100O 376(OH)4(H2O)30]56-: a polyoxometalate containing 20 cerium(III) atoms. Angew Chem Int Ed Engl 46(32):6192–6195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Streb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Streb, C. (2017). Structure and Bonding in Molecular Vanadium Oxides: From Templates via Host–Guest Chemistry to Applications. In: Song, YF. (eds) Polyoxometalate-Based Assemblies and Functional Materials. Structure and Bonding, vol 176. Springer, Cham. https://doi.org/10.1007/430_2017_2

Download citation

Publish with us

Policies and ethics