Skip to main content

Cell Fusion, Drug Resistance and Recurrence CSCs

  • Chapter
  • First Online:
Cell Fusion in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 950))

Abstract

Cancer stem cells (CSCs) are a rare population of cancer cells exhibiting stem cell properties, such as self-renewal, differentiation and tissue restoration. Beside the initiation of the primary tumor, CSCs have also been associated with metastasis formation and cancer relapses. In the context of cancer relapses, we have recently postulated the existence of so-called recurrence CSCs (rCSCs). These specific CSC subtype will initiate relapses exhibiting an “oncogenic resistance” phenotype, which are characterized by a markedly increased malignancy concomitant with a drug resistance towards first line therapy. In the present chapter we will discuss the necessity of rCSCs as a distinct CSC subtype and that cell fusion could be one mechanism how rCSCs could originate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  2. Li R, Sonik A, Stindl R et al (2000) Aneuploidy vs. Gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci USA 97:3236–3241

    Article  PubMed  CAS  Google Scholar 

  3. Boveri T (1902/1964) On multipolar mitosis as a means of analysis of the cell nucleus. In Willier BH, Oppenheimer JM (eds) Foundations of experimental embryology. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  4. Hansemann D (1890) Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch Pathol Anat 119:299–326

    Google Scholar 

  5. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  PubMed  CAS  Google Scholar 

  6. Tang DG, Patrawala L, Calhoun T et al (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46:1–14

    Article  PubMed  CAS  Google Scholar 

  7. Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904

    Article  PubMed  CAS  Google Scholar 

  8. Li F, Tiede B, Massague J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14

    Article  PubMed  CAS  Google Scholar 

  9. Houghton J (2007) Bone-marrow-derived cells and cancer – an opportunity for improved therapy. Nat Clin Pract 4:2–3

    Google Scholar 

  10. Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    Article  PubMed  CAS  Google Scholar 

  11. Jaiswal S, Traver D, Miyamoto T et al (2003) Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 100:10002–10007

    Article  PubMed  CAS  Google Scholar 

  12. Reya T, Duncan AW, Ailles L et al (2003) A role for wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414

    Article  PubMed  CAS  Google Scholar 

  13. Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822

    Article  PubMed  CAS  Google Scholar 

  14. Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69:8536–8539

    Article  PubMed  CAS  Google Scholar 

  15. Huff CA, Matsui W, Smith BD et al (2006) The paradox of response and survival in cancer therapeutics. Blood 107:431–434

    Article  PubMed  CAS  Google Scholar 

  16. Blagosklonny MV (2005) Why therapeutic response May not prolong the life of a cancer patient: selection for oncogenic resistance. Cell Cycle 4:1693–1698

    Article  PubMed  CAS  Google Scholar 

  17. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845

    Article  PubMed  CAS  Google Scholar 

  18. Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984

    Article  PubMed  CAS  Google Scholar 

  19. Shervington A, Lu C (2008) Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest 26:535–542

    Article  PubMed  CAS  Google Scholar 

  20. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  21. Jamieson CH, Ailles LE, Dylla SJ et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667

    Article  PubMed  CAS  Google Scholar 

  22. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  23. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed  CAS  Google Scholar 

  24. O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  25. Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163

    Article  PubMed  CAS  Google Scholar 

  26. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  27. Patrawala L, Calhoun-Davis T, Schneider-Broussard R et al (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805

    Article  PubMed  CAS  Google Scholar 

  28. Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  CAS  Google Scholar 

  29. Ito K, Bernardi R, Morotti A et al (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453:1072–1078

    Google Scholar 

  30. Essers MA, Offner S, Blanco-Bose WE et al (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458:904–908

    Article  PubMed  CAS  Google Scholar 

  31. Wicha MS (2008) Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res 10:105

    Article  PubMed  Google Scholar 

  32. Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24 and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10

    Article  PubMed  Google Scholar 

  33. Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323

    Article  PubMed  CAS  Google Scholar 

  34. Dittmar T, Heyder C, Gloria-Maercker E et al (2008) Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 25:11–32

    Article  PubMed  CAS  Google Scholar 

  35. Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  36. Seidel J, Batistin E, Schwitalla S et al (2007) Cancer cell+stem cell = cancer stem cell? In Saitama H (ed) New cell differentiation research topics. Nova Science Publishers, Hauppauge, NY

    Google Scholar 

  37. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  38. Woodward WA, Chen MS, Behbod F et al (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623

    Article  PubMed  CAS  Google Scholar 

  39. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  PubMed  CAS  Google Scholar 

  40. Patrawala L, Calhoun T, Schneider-Broussard R et al (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219

    Article  PubMed  CAS  Google Scholar 

  41. Ho MM, Ng AV, Lam S et al (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833

    Article  PubMed  CAS  Google Scholar 

  42. Magni M, Shammah S, Schiro R et al (1996) Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 87:1097–1103

    PubMed  CAS  Google Scholar 

  43. Pearce DJ, Taussig D, Simpson C et al (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23:752–760

    Article  PubMed  CAS  Google Scholar 

  44. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  45. Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557

    Article  PubMed  CAS  Google Scholar 

  46. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115

    Article  PubMed  CAS  Google Scholar 

  47. Guan Y, Hogge DE (2000) Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML). Leukemia 14:2135–2141

    Article  PubMed  CAS  Google Scholar 

  48. Holyoake T, Jiang X, Eaves C et al (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064

    PubMed  CAS  Google Scholar 

  49. Dittmar T, Nagler C, Schwitalla S et al (2009) Recurrence cancer stem cells–made by cell fusion? Med Hypotheses 73:542–547

    Article  PubMed  CAS  Google Scholar 

  50. Shafee N, Smith CR, Wei S et al (2008) Cancer stem cells contribute to cisplatin resistance in brca1/p53-mediated mouse mammary tumors. Cancer Res 68:3243–3250

    Article  PubMed  CAS  Google Scholar 

  51. Aichel O (1991) Über Zellverschmelzung mit quantitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. In Roux W (eds) Vorträge und Aufsätze über Entwicklungsmechanik der Organismen. Wilhelm Engelmann, Leipzig

    Google Scholar 

  52. Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448

    Article  PubMed  CAS  Google Scholar 

  53. Barski G, Cornefert F (1962) Characteristics of “hybrid”-type clonal cell lines obtained from mixed cultures in vitro. J Natl Cancer Inst 28:801–821

    PubMed  CAS  Google Scholar 

  54. Islam MQ, Meirelles Lda S, Nardi NB et al (2006) Polyethylene glycol-mediated fusion between primary mouse mesenchymal stem cells and mouse fibroblasts generates hybrid cells with increased proliferation and altered differentiation. Stem Cells Dev 15:905–919

    Article  PubMed  CAS  Google Scholar 

  55. Miller FR, Mohamed AN, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49:4316–4321

    PubMed  CAS  Google Scholar 

  56. Duelli DM, Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2:859–862

    Article  PubMed  CAS  Google Scholar 

  57. Wakeling WF, Greetham J, Bennett DC (1994) Efficient spontaneous fusion between some co-cultured cells, especially murine melanoma cells. Cell Biol Int 18:207–210

    Article  PubMed  CAS  Google Scholar 

  58. Chakraborty AK, Sodi S, Rachkovsky M et al (2000) A spontaneous murine melanoma lung metastasis comprised of host×tumor hybrids. Cancer Res 60:2512–2519

    PubMed  CAS  Google Scholar 

  59. Pawelek J, Chakraborty A, Lazova R et al (2006) Co-opting macrophage traits in cancer progression: a consequence of tumor cell fusion? Contrib Microbiol 13:138–155

    Article  PubMed  Google Scholar 

  60. Rizvi AZ, Swain JR, Davies PS et al (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103:6321–6325

    Article  PubMed  CAS  Google Scholar 

  61. Dittmar T, Schwitalla S, Seidel J et al (2011) Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis 28:75–90

    Article  PubMed  CAS  Google Scholar 

  62. Alison MR, Poulsom R, Otto WR et al (2004) Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol 57:113–120

    Article  PubMed  CAS  Google Scholar 

  63. Camargo FD, Chambers SM, Goodell MA (2004) Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif 37:55–65

    Article  PubMed  CAS  Google Scholar 

  64. Rachkovsky M, Sodi S, Chakraborty A et al (1998) Melanoma×macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16:299–312

    Article  PubMed  CAS  Google Scholar 

  65. Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6:567–575

    Article  PubMed  CAS  Google Scholar 

  66. Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13:480–485

    Article  PubMed  CAS  Google Scholar 

  67. Chang CC, Sun W, Cruz A et al (2001) A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 155:201–207

    Article  PubMed  CAS  Google Scholar 

  68. Camargo FD, Finegold M, Goodell MA (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest 113:1266–1270

    PubMed  CAS  Google Scholar 

  69. Willenbring H, Bailey AS, Foster M et al (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 10:744–748

    Article  PubMed  CAS  Google Scholar 

  70. Li R, Sonik A, Stindl R et al (2000) Aneuploidy versus gene mutation hypothesis of cancer: recent study claims mutation, but is found to support aneuploidy. Proc Natl Acad Sci USA 97:3236–3241

    Article  PubMed  CAS  Google Scholar 

  71. Duesberg P, Stindl R, Hehlmann R (2001) Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proc Natl Acad Sci USA 98:11283–11288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Verein zur Förderung der Krebsforschung e.V.”, Heidelberg, Germany and the Fritz-Bender-Foundation, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dittmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nagler, C., Zänker, K.S., Dittmar, T. (2011). Cell Fusion, Drug Resistance and Recurrence CSCs. In: Dittmar, T., Zänker, K. (eds) Cell Fusion in Health and Disease. Advances in Experimental Medicine and Biology, vol 950. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0782-5_9

Download citation

Publish with us

Policies and ethics