Skip to main content

Cell Wall Modifications Induced by Nematodes

  • Chapter
  • First Online:
Genomics and Molecular Genetics of Plant-Nematode Interactions

Abstract

Sedentary plant parasitic nematodes can induce development of specific feeding structures inside plant roots via reprogramming of plant morphogenetic pathways. The most remarkable examples of this ability are structural, physiological and chemical changes occurring in cell walls of syncytia and giant-cells. The cell walls of feeding structures have to fulfil different requirements. They become thickened to counteract growing internal pressure, but they are still flexible enough to allow cell expansion. They have to increase in mechanical strength but still allow nutrient influx. In some places they become covered with cell wall ingrowths while abutting parts are dissolved and cell wall openings are formed. All these structural changes are based on modifications and specific regulation of the plant’s own cell wall modifying enzymes driven by parasitic nematodes. The following chapter describes ultrastructural rearrangements of the giant-cell and syncytial cell walls and underlying changes in expression of genes coding for different proteins involved in cell wall degradation and synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAI:

day after root invasion

EGase:

endoglucanase

ISC:

initial syncytial cell

J2:

second stage juvenile

J3:

third stage juvenile

J4:

fourth stage juvenile

NFS:

nematode feeding site

TEM:

transmission electron microscopy

References

  • Bar-Or C, Kapulnik Y, Koltai H (2005) A broad characterization of the transcriptional profile of the compatible tomato response to the plant parasitic root knot nematode Meloidogyne javanica. Eur J Plant Pathol 111:181–192

    Article  CAS  Google Scholar 

  • Barcala M, García A, Cabrera J, Casson S, Lindsey K, Favery B, García-Casado G, Solano R, Fenoll C, Escobar C (2009) Early transcriptomic events in microdissected Arabidopsis nematode-induced giant cells. Plant J 61:698–712

    Article  PubMed  CAS  Google Scholar 

  • Berg RH, Fester T, Taylor CG (2008) Development of the root-knot nematode feeding cell. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Springer, Berlin, pp 115–152

    Google Scholar 

  • Bleve-Zacheo T, Zacheo G, Melillo MT, Lamberti F (1982) Ultrastructural aspects of the hypersensitive reaction in tomato root cells resistant to Meloidogyne incognita. Nematol Mediter 10:81–90

    Google Scholar 

  • Bleve-Zacheo T, Melillo MT, Zacheo G (1990) Ultrastructural response of potato roots resistant to cyst nematode Globodera rostochiensis pathotype Ro1. Rev Nématol 13:29–36

    Google Scholar 

  • Böckenhoff A, Grundler FMW (1994) Studies on the nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 109:249–254

    Article  Google Scholar 

  • Böckenhoff A, Prior DAM, Grundler FMW, Oparka KJ (1996) Induction of phloem unloading in Arabidopsis thaliana roots by parasitic nematode Heterodera schachtii. Plant Physiol 112:1421–1427

    Article  PubMed  Google Scholar 

  • Brummell, DA, Lashbrook CC, Bennett AB (1994) Plant endo-1,4-β-glucanases: Structure, properties and their physiological function. Am Chem Soc Symp Ser 556:100–129

    Google Scholar 

  • Carpita NC, McCann M (2000) The cell wall. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108

    Google Scholar 

  • Catala C, Bennett AB (1998) Cloning and sequence analysis of TomCel8, a new plant endo-β-1,4-D-glucanase gene, encoding a protein with a putative carbohydrate binding domain. Plant Physiol 118:1535–1543

    Google Scholar 

  • Catala C, Rose, JKC. Bennett AB (1997) Auxin regulation and spatial localization of an endo-β-1,4-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant J 12:417–426

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol 50: 391–417

    CAS  Google Scholar 

  • Davis EL, Hussey RS, Mitchum MG, Baum TJ (2008) Parasitism proteins in nematode-plant interactions. Curr Opin Plant Biol 11:360–366

    Article  PubMed  CAS  Google Scholar 

  • de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JL, Inzé D, Van Montagu M, Engler G, Gheysen G (1999) Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11:793–807

    PubMed  Google Scholar 

  • Del Campillo E (1999) Multiple endo-1,4-ß-D-glucanase (cellulase) genes in Arabidopsis. Curr Top Dev Biol 46:39–61

    Article  PubMed  CAS  Google Scholar 

  • Del Campillo E, Bennett AB (1996) Pedicel breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiol 111:813–820

    Article  PubMed  CAS  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  PubMed  CAS  Google Scholar 

  • Endo BY (1978) Feeding plug formation in soybean roots infected with the soybean cyst nematode. Phytopathology 68:1022–1031

    Article  Google Scholar 

  • Endo BY (1991) Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines. Rev Nématol 14:73–94

    Google Scholar 

  • Fudali S, Janakowski S, Sobczak M, Griesser M, Grundler FMW, Golinowski W (2008) Two tomato α-expansins show distinct spatial and temporal expression patterns during development of nematode-induced syncytia. Physiol Plant 132:370–383

    Article  PubMed  CAS  Google Scholar 

  • Gal TZ, Aussenberg ER, Burdman S, Kapulnik Y, Koltai H (2006) Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Planta 224:155–162

    Article  PubMed  CAS  Google Scholar 

  • Goellner M, Wang X, Davis EL (2001) Endo-ß-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell 13:2241–2255

    PubMed  CAS  Google Scholar 

  • Golinowski W, Magnusson C (1991) Tissue response induced by Heterodera schachtii (Nematoda) in susceptible and resistant white mustard cultivars. Can J Bot 69:53–62

    Article  Google Scholar 

  • Golinowski W, Grundler FMW, Sobczak M (1996) Changes in the structure of Arabidopsis thaliana during female development of the plant-parasitic nematode Heterodera schachtii. Protoplasma 194:103–116

    Article  Google Scholar 

  • Goverse A, de Almeida Engler J, Verhees J, van der Krol S, Helder J, Gheysen G (2000) Cell cycle activation by plant parasitic nematodes. Plant Mol Biol 43:747–761

    Article  PubMed  CAS  Google Scholar 

  • Grundler FMW, Sobczak M, Golinowski W (1998) Formation of wall openings in root cells of Arabidopsis thaliana following infection by the plant-parasitic nematode Heterodera schachtii. Eur J Plant Pathol 104:545–551

    Article  Google Scholar 

  • Grymaszewska G, Golinowski W (1998) Structure of syncytia induced by Heterodera schachtii Schmidt in roots of susceptible and resistant radish (Raphanus sativus L. var. oleiformis). Acta Soc Bot Pol 67:207–216

    Google Scholar 

  • Gunning BES (1977) Transfer cells and their roles in transport of solutes in plants. Sci Prog 64:539–568

    Google Scholar 

  • Hewezi T, Howe P, Maier TR, Hussey RS, Goellner Mitchum M, Davis EL, Baum TJ (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: Cooperative cell wall modification during parasitism. Plant Cell 20:3080–3093

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J, Grundler FMW (2006) Females and males of root-parasitic cyst nematodes induce different symplasmic connections between their syncytial feeding cells and the phloem in Arabidopsis thaliana. Plant Physiol Biochem 44:430–433

    Article  PubMed  CAS  Google Scholar 

  • Hofmann J, Wieczorek K, Blöchl A, Grundler FWM (2007) Sucrose supply to nematode-induced syncytia depends on the apoplasmic and the symplasmic pathway. J Exp Bot 58:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Holtmann B, Kleine M, Grundler FMW (2000) Ultrastructure and anatomy of nematode-induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 211:39–50

    Article  Google Scholar 

  • Hoth S, Schneidereit A, Lauterbach C, Scholz-Starke J, Sauer N (2005) Nematode infection triggers the de novo formation of unloading phloem that allows macromolecular trafficking of green fluorescent protein into syncytia. Plant Physiol 138:383–392

    Article  PubMed  CAS  Google Scholar 

  • Hudson LC (2008) Analysis of cell wall synthesis genes in feeding cells formed by root-knot nematodes. PhD thesis. Plant Pathology, North Carolina State University, Raleigh

    Google Scholar 

  • Hussey RS, Mims CW (1991) Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematode Meloidogyne incognita. Protoplasma 162:99–107

    Article  Google Scholar 

  • Hussey RS, Mims CW, Westcott III SW (1992) Immunocytochemical localization of callose in root cortical cells parasitized by the ring nematode Criconemella xenoplax. Protoplasma 171:1–6

    Article  CAS  Google Scholar 

  • Im KH, Cosgrove DT, Jones AM (2000) Subcellular localization of expansin mRNA in xylem cells. Plant Physiol 123: 463–470

    Article  PubMed  CAS  Google Scholar 

  • Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG (2007a) Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol Plant Microbe Interact 20:293–305

    Article  CAS  Google Scholar 

  • Ithal N, Recknor J, Nettleton D, Maier T, Baum TJ, Mitchum MG (2007b) Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol Plant Microbe Interact 20:510–525

    Article  CAS  Google Scholar 

  • Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette ML, Renou JP, Abad P, Favery B (2005) Genome wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44:447–458

    Article  PubMed  CAS  Google Scholar 

  • Jones MGK, Gunning BES (1976) Transfer cells and nematode induced giant cells in Helianthemum. Protoplasma 87:273–279

    Article  Google Scholar 

  • Jones MGK, Northcote DH (1972a) Nematode-induced syncytium-a multinucleate transfer cell. J Cell Sci 10:789–809

    CAS  Google Scholar 

  • Jones MGK, Northcote DH (1972b) Multinucleate transfer cells induced in coleus roots by root-knot nematode, Meloidogyne arenaria. Protoplasma 75:381–395

    Article  Google Scholar 

  • Jones MGK, Payne HL (1977) The structure of syncytia induced by the phytoparasitic nematode Nacobbus aberrans in tomato roots, and the possible role of plasmodesmata in their nutrition. J Cell Sci 23:299–313

    PubMed  CAS  Google Scholar 

  • Jones MGK, Payne HL (1978) Early stages of nematode-induced giant-cell formation in roots of Impatiens balsamina. J Nematol 10:70–84

    PubMed  CAS  Google Scholar 

  • Juergensen K, Scholz-Starke J, Sauer N, Hess P, van Bel AJE, Grundler FMW (2003) The companion cell-specific Arabidopsis disaccharide carrier AtSUC2 is expressed in nematode-induced syncytia. Plant Physiol 131:61–69

    Article  PubMed  CAS  Google Scholar 

  • Kaliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J 5:157–172

    Article  Google Scholar 

  • Kaliszewski MJ, Shpak E (2001) Synthetic genes for the elucidation of glycosylation codes for arabinogalactan-proteins and other hydroxyproline-rich glycoproteins. Cell Mol Life Sci 58:1386–1398

    Article  Google Scholar 

  • Karczmarek A, Overmars H, Helder J, Goverse A (2004) Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxin-inducible promoter element. Mol Plant Pathol 5:343–346

    Article  PubMed  CAS  Google Scholar 

  • Karczmarek A, Fudali S, Lichocka M, Sobczak M, Kurek W, Janakowski S, Roosien J, Golinowski W, Bakker J, Goverse A, Helder J (2008) Expression of two functionally distinct plant endo-β-1,4-glucanases is essential for compatible interaction between potato cyst nematode and its hosts. Mol Plant Microbe Interact 21:791–798

    Article  PubMed  CAS  Google Scholar 

  • Kende H, Bradford KJ, Brummell DA, Cho HT, Cosgrove DJ, Fleming AJ, Gehring C, Lee Y, McQueen-Mason S, Rose JKC, Voesenek LACJ (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Riggs RD, Kim KS (1987) Structural changes associated with resistance of soybean to Heterodera glycines. J Nematol 19:177–187

    PubMed  CAS  Google Scholar 

  • Kouassi AB, Kerlan M-C, Sobczak M, Dantec J-P, Rouaux C, Ellissèche D, Mugniéry D (2004) Resistance to the root-knot nematode Meloidogyne fallax in Solanum sparsipilum: analysis of the mechanisms. Nematology 6:389–400

    Article  Google Scholar 

  • Kouassi AB, Kerlan M-C, Sobczak M, Dantec J-P, Rouaux C, Ellissèche D, Mugniéry D (2005) Genetics and phenotypic characterisation of the hypersensitive resistance of Solanum sparsipilum to Meloidogyne incognita. Nematology 7:213–225

    Article  CAS  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides-a complex process. Curr Opin Plant Biol 9:621–630

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam R, Wang G, Knap HT (1999) Polygalacturonase and polygalacturonase inhibitor protein: gene isolation and transcription in Glycine max-Heterodera glycines interactions. Mol Plant Microbe Interact 12:490–498

    Article  PubMed  CAS  Google Scholar 

  • Master ER, Rudsander UJ, Zhou W, Henriksson H, Divne C, Denman S, Wilson DB, Teeri TT (2004) Recombinant expression and enzymatic characterization of PttCel9A, a KOR homologue from Populus tremula tremuloides. Biochemistry 43:10080–10089

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason SJ, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4:1425–1433

    PubMed  CAS  Google Scholar 

  • Mitchum MG, Sukno S, Wang X, Shani Z, Tsabary G, Shoseyov O, Davis E (2004) The promoter of the Arabidopsis thaliana cel1 endo-1,4-β glucanase gene is differentially expressed on plant feeding cells induced by root-knot and cyst nematode. Mol Plant Pathol 5:175–181

    Article  PubMed  CAS  Google Scholar 

  • Molhøj M, Jorgensen B, Ulvskov P, Borkhardt B (2001) Two Arabidopsis thaliana genes, KOR and KOR3, which encode membrane-anchored endo-1,4-β-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells. Plant Mol Biol 46:263–275

    Article  PubMed  Google Scholar 

  • Mordechai MM, Oka Y (2006) Histological studies of giant cells formed by the root-knot nematode Meloidyne artiellia as compared with M. hapla and M. javanica in cabbage, turnip and barley. Phytoparasitica 34:502–509

    Article  Google Scholar 

  • Müller J, Rehbock K, Wyss U (1982) Growth of Heterodera schachtii with remarks on amounts of food consumed. Rev Nématol 4:227–234

    Google Scholar 

  • Niebel A, de Almeida Engler J, Tiré C, Engler G, van Montagu M, Gheysen G (1993) Induction patterns of an extensin gene in tobacco upon nematode infection. Plant Cell 5:1697–1710

    PubMed  CAS  Google Scholar 

  • Nishitani K, Tominaga R (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 267:21058–21064

    PubMed  CAS  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2002) Transfer cells: cells specialized for special purpose. Annu Rev Plant Biol 54:431–454

    Article  CAS  Google Scholar 

  • Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750

    Article  Google Scholar 

  • Pate JS, Gunning BES (1972) Transfer cells. Annu Rev Plant Physiol 23:174–196

    Article  Google Scholar 

  • Paulson RE, Webster JM (1972) Ultrastructure of the hypersensitive reaction in roots of tomato, Lycopersicon esculentum L. to infection by the root-knot nematode, Meloidogyne incognita. Physiol Plant Pathol 2:227–234

    Article  Google Scholar 

  • Puthoff DP, Nettleton D, Rodermel SR, Baum TJ (2003) Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J 33:911–921

    Article  PubMed  CAS  Google Scholar 

  • Puthoff DP, Ehrenfried ML, Vinyard BT, Tucker ML (2007) GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots. J Exp Bot 58:3407–3418

    Article  PubMed  CAS  Google Scholar 

  • Razak RA, Evans AAF (1976) An intracellular tube associated with feeding by Rotylenchulus reniformis on cowpea root. Nematologica 22:182–189

    Article  Google Scholar 

  • Rebois RV (1980) Ultrastructure of a feeding peg and tube associated with Rotylenchulus reniformis in cotton. Nematologica 26:396–405

    Article  Google Scholar 

  • Rice SL, Leadbeater BSC, Stone AR (1985) Changes in cell structure in roots of resistant potatoes parasitized by potato cyst nematodes. I. Potatoes with resistance gene H1 derived from Solanum tuberosum ssp. andigena. Physiol Plant Pathol 27:219–234

    Article  CAS  Google Scholar 

  • Rice SL, Stone AR, Leadbeater BSC (1987) Changes in cell structure in roots of resistant potatoes parasitized by potato cyst nematodes. 2. Potatoes with resistance derived from Solanum vernei. Physiol Mol Plant Pathol 31:1–14

    Article  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  PubMed  CAS  Google Scholar 

  • Riggs RD, Kim KS, Gipson I (1973) Ultrastructural changes in Peking soybeans infected with Heterodera glycines. Phytopathology 63:76–84

    Article  Google Scholar 

  • Rose JKC, Bennett AB (1999) Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Reviews 4:176–183

    Google Scholar 

  • Rose JKC, Lee H, Bennett AB (1997) Expression of a divergent expansin gene is fruit specific and ripening-regulated. Proc Natl Acad Sci USA 94:5955–5960

    Article  PubMed  CAS  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:1–11

    Article  CAS  Google Scholar 

  • Scheible WR, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr Opin Plant Biol 7:285–295

    Article  PubMed  CAS  Google Scholar 

  • Shani Z, Dekel M, Tsabary G, Shoseyov O (1997) Cloning and characterization of elongation specific endo-β-1,4-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol 34:837–842

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Fry SC (1991) Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J 279:529–533

    PubMed  CAS  Google Scholar 

  • Sobczak M, Golinowski W (2008) Structure of cyst nematode feeding sites. In: Berg RH, Taylor CG (eds) Cell biology of plant nematode parasitism. Springer, Berlin, pp 153–187

    Google Scholar 

  • Sobczak M, Golinowski W, Grundler FMW (1997) Changes in the structure of Arabidopsis thaliana roots induced during development of males of the plant parasitic nematode Heterodera schachtii. Eur J Plant Pathol 103:113–124

    Article  Google Scholar 

  • Sobczak M, Golinowski W, Grundler FMW (1999) Ultrastructure of feeding plugs and feeding tubes formed by Heterodera schachtii. Nematology 1:363–374

    Article  Google Scholar 

  • Sobczak M, Avrova A, Jupowicz J, Phillips MS, Ernst K, Kumar A (2005) Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol Plant Microbe Interact 18:158–168

    Article  PubMed  CAS  Google Scholar 

  • Soliman AH, Sobczak M, Golinowski W (2005) Defence responses of white mustard, Sinapis alba, to infection with the cyst nematode Heterodera schachtii. Nematology 7:881–889

    Article  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson T, Raab T, Vorwerk S, Youngs H (2004) Toward a system approach to understanding plant cell walls. Science 306:2206–2211

    Article  PubMed  CAS  Google Scholar 

  • Sukno S, Shimerling O, McCuiston J, Tsabary G, Shani Z, Shoseyov O, Davis EL (2006) Expression and regulation of the Arabidopsis thaliana Cel1 endo 1,4 β glucanase gene during compatible plant-nematode interactions. J Nematol 38:354–361

    PubMed  CAS  Google Scholar 

  • Swiecicka M, Filipecki M, Lont D, Van Vliet J, Qin L, Goverse A, Bakker J, Helder J (2009) Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis. Mol Plant Pathol 10:487–500

    Article  PubMed  CAS  Google Scholar 

  • Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil DP, Sykacek P, Grundler FMW, Bohlmann H (2009) The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in A. thaliana roots. Plant J 57:771–784

    Article  PubMed  CAS  Google Scholar 

  • Tucker ML, Burke A, Murphy CA, Thai VK, Ehrenfried ML (2007) Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves. J Exp Bot 58:3395–3406

    Article  PubMed  CAS  Google Scholar 

  • Van der Eycken W, de Almeida Engler J, Inze D, Van Montagu M, Gheysen G (1996) A molecular study of root-knot nematode-induced feeding sites. Plant J 9:45–54

    Article  PubMed  Google Scholar 

  • Vercauteren I, de Almeida Engler J, De Groodt R, Gheysen G (2002) An Arabidopsis thaliana pectin acetylesterase gene is upregulated in nematode feeding sites induced by root-knot and cyst nematodes. Mol Plant Microbe Interact 15:404–407

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Replogle A, Davis EL, Mitchum MG (2007) The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Mol Plant Pathol 8:426–436

    CAS  Google Scholar 

  • Wieczorek K, Grundler FMW (2006) Expanding nematode-induced syncytia. The role of expansins. Plant Signal Behav 1:223–224

    Article  Google Scholar 

  • Wieczorek K, Golecki B, Gerdes L, Heinen P, Szakasits D, Durachko DM, Cosgrove DJ, Kreil DP, Puzio PS, Bohlmann H, Grundler FMW (2006) Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant J 48:98–112

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek K, Hofmann J, Blöchl A, Szakasits D, Bohlmann H, Grundler FMW (2008) Arabidopsis endo-1,4-β-glucanases are involved in the formation of root syncytia induced by Heterodera schachtii. Plant J 53:336–351

    Article  PubMed  CAS  Google Scholar 

  • Willats WG,McCartney L, Mackie W, Knox JP. (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  • Wyss U (1992) Observations on the feeding behaviour of Heterodera schachtii throughout development, including events during moulting. Fundam Appl Nematol 15:75–89

    Google Scholar 

  • Wyss U, Stender C, Lehmann H (1984) Ultrastructure of feeding sites of the cyst nematode Heterodera schachtii Schmidt in roots of susceptible and resistant Raphanus sativus L. var. oleiformis Pers. cultivars. Physiol Plant Pathol 25:21–37

    Article  Google Scholar 

  • Wyss U, Grundler FMW, Münch A (1992) The parasitic behaviour of second-stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica 38:98–111

    Article  Google Scholar 

  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to Eric L. Davis, Shahid Siddique, Renata Dobosz, Wladyslaw Golinowski, Justyna Jupowicz, Grazyna Grymaszewska, Michaela Griesser, Kamila Koropacka and Aneta Karczmarek for providing research materials that were used to prepare this publication. Some of the Authors’ research presented above was supported by grants of the Austrian and Polish Ministries of Science and Higher Education and the EU COST Action 872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslaw Sobczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sobczak, M., Fudali, S., Wieczorek, K. (2011). Cell Wall Modifications Induced by Nematodes. In: Jones, J., Gheysen, G., Fenoll, C. (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0434-3_19

Download citation

Publish with us

Policies and ethics