Skip to main content

The Photosynthetic Apparatus of the Living Fossil, Cyanophora paradoxa

  • Chapter
  • First Online:
Bioenergetic Processes of Cyanobacteria

Abstract

Muroplasts, the peculiar plastids (previously called cyanelles) of glaucocystophyte algae did retain—with some modifications—the peptidoglycan wall of their cyanobacterial ancestor. This is not only a convincing proof of the endosymbiotic theory, but earns glaucocystophytes the status of living fossils, as peptidoglycan is found nowhere else among eukaryotes. Muroplasts show even more cyanobacterial features than other primitive plastids, e.g., rhodoplasts. Almost all data available at present come from one species, Cyanophora paradoxa. The plastome, containing a surplus of 50 protein genes compared to chloroplast genomes (Table 2.1) and about 30% of the transcriptome (ESTs) of this organism are sequenced and a genome project is in progress. While Cyanophora does not offer such possibilities for genetic analysis as the Chlamydomonas system, due to its reasonable growth rate it is amenable to biochemical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi H, Umena Y, Enami I, Henmi T, Kamiya N and Shen J-R (2009) Towards structural elucidation of eukaryotic photosystem II: purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga. Biochim Biophys Acta 1787: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Adl SM, Simpson AGB, Farmer MA, Andersen R, Anderson OR, Barta JA, Bowser SS, Bragerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW and Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52: 399–451

    Article  PubMed  Google Scholar 

  • Apt KE and Grossman AR (1993) Characterization and transcript analysis of the major phycobiliprotein subunit genes from Aglaothamnion neglectum (Rhodophyta). Plant Mol Biol 21: 27–38

    Article  PubMed  CAS  Google Scholar 

  • Apt KE, Hoffman NE and Grossman AR (1993) The gamma subunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem 268: 16208–16215

    PubMed  CAS  Google Scholar 

  • Badger MR and Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54: 609–622

    Article  PubMed  CAS  Google Scholar 

  • Burey SC, Fathi-Nejad S, Poroyko V, Steiner JM, Löffelhardt W and Bohnert HJ (2005) The central body of the cyanelles of Cyanophora paradoxa: a eukaryotic carboxysome? Can J Bot 83: 758–764

    Article  CAS  Google Scholar 

  • Burey SC, Poroyko V, Ozturk ZN, Fathi-Nejad S, Schüller C, Ohnishi N, Fukuzawa H, Bohnert HJ and Löffelhardt W (2007) Acclimation to low CO2 by an inorganic carbon concentrating mechanism in Cyanophora paradoxa. Plant Cell Environ 30: 1422–1435

    Article  PubMed  CAS  Google Scholar 

  • Busch A, Nield J and Hippler M (2010) The composition and structure of photosystem I associated antenna from Cyanidioschyzon merolae. Plant J 62: 886–897

    Google Scholar 

  • Dalbey RE and Robinson C (1999) Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. Trends Biochem Sci 24: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux J-L, Buléon A, Haebel S, Ritte G, Steup M, Falcón L, Moreira D, Löffelhardt W, Raj JN, Plancke C, d’Hulst C, Dauvillée D and Ball S (2008) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25: 536–548

    Article  PubMed  CAS  Google Scholar 

  • Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W and Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25: 748–761

    Article  PubMed  CAS  Google Scholar 

  • Dong CX, Tang AH, Zhao JD, Mullineaux CW and Bryant DA (2009) ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 1787: 1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Douglas SE and Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–244

    Article  PubMed  CAS  Google Scholar 

  • Egelhoff T and Grossman AR (1983) Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proc Natl Acad Sci U S A 80: 3339–3343

    Article  PubMed  CAS  Google Scholar 

  • Enami I, Murayama H, Ohta H, Kamo M, Nakazato K and Shen JR (1995) Isolation and characterization of a Photosystem II complex from the red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. Biochim Biophys Acta 1232: 208–216

    Article  PubMed  Google Scholar 

  • Fathinejad S, Steiner JM, Reipert S, Marchetti M, Allmaier G, Burey SC, Ohnishi N, Fukuzawa H, Löffelhardt W and Bohnert HJ (2008) A carboxysomal CCM in the cyanelles of the “coelacanth” of the algal world, Cyanophora paradoxa? Physiol Plant 133: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Fettke J, Hejazi M, Smirnowa J, Höchel E, Stage M and Steup M (2009) Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. J Exp Bot 60: 2907–2922

    Article  PubMed  CAS  Google Scholar 

  • Flechner A, Gross W, Martin WF and Schnarrenberger C (1999) Chloroplast class I and II aldolases are bifunctional for fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate cleavage in the Calvin cycle. FEBS Lett 447: 200–202

    Article  PubMed  CAS  Google Scholar 

  • Gebhart UB, Maier TL, Stefanovic S, Bayer MG and Schenk HEA (1992) Ferredoxin-NADP oxidoreductase of Cyanophora paradoxa: purification, partial characterization, and N-terminal amino acid sequence. Protein Expr Purif 3: 228–235

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Beardall J and Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56: 99–131

    Article  PubMed  CAS  Google Scholar 

  • Glöckner G, Rosenthal A and Valentin K (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51: 382–390

    PubMed  Google Scholar 

  • Gross W, Bayer MG, Schnarrenberger C, Gebhart UB, Maier TL and Schenk HEA (1994) Two distinct aldolases of class II type in the cyanoplasts and in the cytosol of the alga Cyanophora paradoxa. Plant Physiol 105: 1393–1398

    PubMed  CAS  Google Scholar 

  • Jakowitsch J, Bayer MG, Maier TL, Lüttke A, Gebhart UB, Brandtner M, Hamilton B, Neumann-Spallart C, Michalowski CB, Bohnert HJ, Schenk HEA and Löffelhardt W (1993) Sequence analysis of pre-ferredoxin-NADP+-reductase cDNA from Cyanophora paradoxa specifying a precursor for a nucleus-encoded cyanelle polypeptide. Plant Mol Biol 21: 1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Jakowitsch J, Neumann-Spallart C, Ma Y, Steiner JM, Schenk HEA, Bohnert HJ and Löffelhardt W (1996) In vitro import of pre-ferredoxin-NADP+-oxidoreductase from Cyanophora paradoxa into cyanelles and into pea chloroplasts. FEBS Lett 381: 153–155

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K and Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41: 8004–8012

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M and Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science 309: 936–938

    Article  PubMed  CAS  Google Scholar 

  • Kies L (1992) Glaucocystophyceae and other protists harboring prokaryotic endosymbionts. In: W Reisser (ed) Algae and symbioses, pp. 353–377. Biopress, Bristol

    Google Scholar 

  • Kloos K, Schlichting R, Zimmer W and Bothe H (1993) Glutamine and glutamate transport in Cyanophora paradoxa. Bot Acta 106: 435–440

    CAS  Google Scholar 

  • Kneip C, Voss C, Lockhart PJ and Maier UG (2008) The cyanobacterial endosymbiont of the unicellular alga Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8: 30

    Article  PubMed  Google Scholar 

  • Koike H, Shibata M, Yasutomi K, Kashino Y and Sato K. (2000) Identification of photosystem I components from a glaucocystophyte, Cyanophora paradoxa: the PsaD protein has an N-terminal stretch homologous to higher plants. Photosynth Res 65: 207–217

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Ochiai Y, Katayama M and Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144: 1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Kovacevic G, Steiner JM and Löffelhardt W (2009) Cyanobacterial and algal symbioses. In: UE Schaible and A Haas (eds) Intracellular niches of microbes, pp. 527–545, Wiley-VCH, Weinheim

    Chapter  Google Scholar 

  • Kowallik KV, Stoebe B, Schaffran I and Freier U (1995) The chloroplast genome of a chlorophyll a+c containing alga, Odontella sinensis. Plant Mol Biol Rep 13: 336–342

    Article  CAS  Google Scholar 

  • Liberton M, Howard Berg R, Heuser J, Roth R and Pakrasi H (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227: 129–138

    Article  PubMed  Google Scholar 

  • Linka M, Jamai A and Weber APM (2008) Single ancient origin of a plastidic phosphate translocator gene family from the thermo-acidophilic alga Galdieria sulfuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. Plant Physiol 148: 1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Liu L-N, Aartsma TJ, Thomas J-C, Lamers GEM, Zhou B-C and Zhang Y-Z (2008a) Watching the native supramolecular architecture of photosynthetic membrane in red algae. J Biol Chem 283: 34946–34953

    Article  CAS  Google Scholar 

  • Liu L-N, Elmalk AT, Aartsma TJ, Thomas J-C, Lamers GEM, Zhou BC and Zhang YZ (2008b) Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. PLoS ONE 3: e3134

    Article  Google Scholar 

  • Löffelhardt W and Bohnert HJ (2001) The cyanelle (muroplast) of Cyanophora paradoxa: a paradigm for endosymbiotic organelle evolution. In: J Seckbach (ed) Symbiosis, pp. 111–130. Kluwer Academic, Dordrecht

    Google Scholar 

  • Löffelhardt W, Bohnert HJ and Bryant DA (1997) The complete sequence of the Cyanophora paradoxa cyanelle genome (Glaucocystophyceae). Plant Syst Evol (Suppl) 11: 149–162

    Article  Google Scholar 

  • Ma Y, Jakowitsch J, Deusch O, Henze K, Martin W and Löffelhardt W (2009) Transketolase from Cyanophora paradoxa: in vitro import into cyanelles and pea chloroplasts and a complex history of a gene often, but not always, transferred in the context of secondary endosymbiosis. J Eukaryot Microbiol 56: 568–576

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124: 311–334

    Article  PubMed  CAS  Google Scholar 

  • Mangeney E and Gibbs SP (1987) Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Eur J Cell Biol 43: 65–70

    CAS  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M and Kowallik K (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162–165

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K and Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135: 1–13

    Article  Google Scholar 

  • Nickol AA, Müller NE, Bausenwein U, Bayer MG, Maier TL and Schenk HEA (2000) Nucleotide sequence and phylogeny of the nucleus-encoded muroplast fructose-1,6-bisphosphate aldolase. Z Naturforsch 55c: 991–1003

    Google Scholar 

  • Nowack ECM, Melkonian M and Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18: 410–418

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Okumura A, Okuyama S, Akiyama A, Iwai M, Yoshihara S, Shen JR, Kamo M and Enami I (1999) Cloning and expression of the psbU gene and functional studies of the recombinant 12 kDa protein of photosystem II from the red alga Cyanidium caldarium. Biochem Biophys Res Commun 260: 245–250

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Suzuki T, Ueno M, Okumura A, Yoshihara S, Shen JR and Enami I (2003) Extrinsic proteins of photosystem II: an intermediate member of PsbQ protein family in red algal PS II. Biochem Biophys Res Commun 270: 4156–4163

    CAS  Google Scholar 

  • Petersen J, Teich R, Becker B, Cerff R and Brinkmann H (2006) The GapA/B gene duplication marks the origin of the streptophyta (Charophytes and land plants). Mol Biol Evol 23: 1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Pfanzagl B, Allmaier G, Schmid ER, de Pedro MA and Löffelhardt W (1996) N-Acetylputrescine as a characteristic constituent of cyanelle peptidoglycan in glaucocystophyte algae. J Bacteriol 179: 6994–6997

    Google Scholar 

  • Plancke C, Colleoni C, Deschamps P, Dauvillée D, Nakamura Y, Haebel S, Steup M, Buléon A, Putaux J-L, Dupeyre D, d’Hulst C, Ral J-P, Löffelhardt W, Maes E and Ball SG (2008) The pathway of starch synthesis in the model glaucophyte Cyanophora paradoxa. Eukaryot Cell 7: 247–257

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (2003) Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Eur J Phycol 38: 47–53

    Article  Google Scholar 

  • Reith M and Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333–335

    Article  CAS  Google Scholar 

  • Reyes-Prieto A and Bhattacharya D (2007a) Phylogeny of Calvin cycle enzymes supports plantae monophyly. Mol Phylogenet Evol 45: 384–391

    Article  CAS  Google Scholar 

  • Reyes-Prieto A and Bhattacharya D (2007b) Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within plantae. Mol Biol Evol 24: 2358–2361

    Article  CAS  Google Scholar 

  • Rissler HM and Durnford DG (2005) Isolation of a novel carotenoid-rich protein in Cyanophora paradoxa that is immunologically related to the light-harvesting complexes of photosynthetic eukaryotes. Plant Cell Physiol 46: 416–424

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H,Burey SC, Roure B, Burger G, Löffelhardt W, Bohnert HJ, Philippe H and Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae and glaucophytes. Curr Biol 15: 1325–1330

    Article  PubMed  Google Scholar 

  • Roose JL, Kashino Y and Pakrasi H (2007) The PsbQ protein defines cyanobacterial photosystem II complexes with highest activity and stability. Proc Natl Acad Sci U S A 104: 2548–2553

    Article  PubMed  CAS  Google Scholar 

  • Schlichting R and Bothe H (1993) The cyanelles (organelles of a low evolutionary scale) possess a phosphate-translocator and a glucose-carrier in Cyanophora paradoxa. Bot Acta 106: 428–434

    CAS  Google Scholar 

  • Schlichting R, Zimmer W and Bothe H (1990) Exchange of metabolites in Cyanophora paradoxa and its cyanelles. Bot Acta 103: 392–398

    Google Scholar 

  • Serrano A and Löffelhardt W (1994) Identification of 2 different glyceraldehyde-3-phosphate dehydrogenases (phosphorylating) in the photosynthetic protist Cyanophora paradoxa. Arch Microbiol 162: 14–19

    Article  CAS  Google Scholar 

  • Shen J-R, Ming Q, Inoue Y and Burnap RL (1998) Functional characterization of Synechocystis sp. PCC 6803 DpsbU and DpsbV mutants reveal important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry 37: 1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Kashino Y, Sato K and Koike H (2001) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a glaucocystophyte, Cyanophora paradoxa. Plant Cell Physiol 42: 733–741

    Article  PubMed  CAS  Google Scholar 

  • Six C, Thomas J-C, Thion L, Lemoine Y, Zal F and Partensky F (2005) Two novel phycoerythrin-associated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102. J Bacteriol 187: 1685–1694

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM and Löffelhardt W (2005) Protein translocation into and within cyanelles. Mol Membr Biol 22: 123–132

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Serrano A, Allmaier G, Jakowitsch J and Löffelhardt W (2000) Cytochrome c 6 from Cyanophora paradoxa: characterization of the protein and the cDNA of the precursor and import into isolated cyanelles. Eur J Biochem 267: 4232–4241

    PubMed  CAS  Google Scholar 

  • Steiner JM, Pompe JA and Löffelhardt W (2003) Characterization of apcC, the nuclear gene for the phycobilisome core linker polypeptide Lc 7.8 from the glaucocystophyte alga Cyanophora paradoxa. Import of the precursor into cyanelles and integration of the mature protein into intact phycobilisomes. Curr Genet 44: 132–137

    Article  PubMed  CAS  Google Scholar 

  • Steiner JM, Yusa F, Pompe JA and Löffelhardt W (2005a) Homologous protein import machineries in chloroplasts and cyanelles. Plant J 44: 646–652

    Article  CAS  Google Scholar 

  • Steiner JM, Berghöfer J, Yusa F, Pompe JA, Klösgen RB and Löffelhardt W (2005b) Conservative sorting in a primitive plastid: the cyanelle of Cyanophora paradoxa. FEBS J 272: 987–998

    Article  CAS  Google Scholar 

  • Stoebe B and Maier UG (2002) One, two, three: nature’s tool box for building plastids. Mol Biol Evol 25: 748–761

    Google Scholar 

  • Stoebe B, Martin W and Kowallik KV (1998) Distribution and nomenclature of protein–coding genes in 12 sequenced chloroplast genomes. Plant Mol Biol Rep 16: 243–255

    Article  CAS  Google Scholar 

  • Wang HL, Postier BL and Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279: 5739–5751

    Article  PubMed  CAS  Google Scholar 

  • Weber APM, Linka M and Bhattacharya D (2006) Single ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5: 609–612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Austrian “Fonds zur Förderung der wissenschaftlichen Forschung” for continuous support of their research on glaucocystophytes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Löffelhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Steiner, J.M., Löffelhardt, W. (2011). The Photosynthetic Apparatus of the Living Fossil, Cyanophora paradoxa . In: Peschek, G., Obinger, C., Renger, G. (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0388-9_2

Download citation

Publish with us

Policies and ethics