Skip to main content
Log in

Sequence analysis of pre-ferredoxin-NADP+-reductase cDNA from Cyanophora paradoxa specifying a precursor for a nucleus-encoded cyanelle polypeptide

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A cDNA clone for pre-ferredoxin-NADP+ reductase (FNR) was obtained by screening a Cyanophora paradoxa expression library with antibodies specific for cyanelle FNR. The 1.4 kb transcript was derived from a single-copy gene. The precursor (41 kDa) and mature forms (34 kDa) of FNR were identified by western blotting of in vitro translation products and cyanelle extracts, respectively. The derived amino acid sequence of the mature form was corroborated by data from N-terminal protein sequencing and yielded identity scores from 58% to 62% upon comparison with cyanobacterial FNRs. Sequence conservation seemed to be even more pronounced in comparison with enzymes from higher plants, but using the neighbor joining method the C. paradoxa sequence was clearly positioned between the prokaryotic and eukaryotic sequences. The transit peptide of 65 or 66 amino acids appeared to be totally unrelated to those from spinach, pea and ice plant but showed overall characteristics of stroma-targeting peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken A, Stanier RY: Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. J Gen Microbiol 212: 218–229 (1979).

    Google Scholar 

  2. Bayer MG: Detektion von kern- und cyanellenkodierten Proteinen bei Cyanophora paradoxa im Mikromaßstab sowie biochemische und molekularbiologische Charakterisierung des Ferredoxins. Thesis, University of Tübingen (1991).

  3. Bayer MG, Gebhard UB, Maier TL, Schenk HEA: Two-step purification of Cyanophora ferredoxin and its identification in soluble protein preparations by isoelectric focusing. Protein Express Purif 2: 240–247 (1991).

    Google Scholar 

  4. Bayer MG, Maier TL, Gebhart UB, Schenk HEA: Cyanellar ferredoxin-NADP+-oxidoreductase is encoded by the nuclear genome and synthesized on cytoplasmic 80S ribosomes. Curr Genet 17: 265–267 (1990).

    Article  Google Scholar 

  5. Bayer MG, Schenk HEA: Biosynthesis of proteins in Cyanophora paradoxa. I. Protein import into the endocyanelle analyzed by micro two-dimensional gel electrophoresis. Endocyt Cell Res 3: 197–202 (1986).

    Google Scholar 

  6. Bohnert HJ, Löffelhardt W: Molecular genetics of cyanelles from Cyanophora paradoxa In: Reisser W (ed) Algal Symbioses, pp. 379–397. Biopress, Bristol (1992).

    Google Scholar 

  7. Bryant DA: Genetic analysis of phycobilisome biosynthesis, assembly, structure, and function in the cyanobacterium Synechococcus sp. PCC 7002. In: Stevens SE, Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp. 62–90. American Society of Plant Physiologists, Rockville (1988).

    Google Scholar 

  8. Ceccarelli EA, Viale AM, Krapp AR, Carrillo N: Expression, assembly, and processing of an active plant ferredoxin-NADP+ oxidoreductase and its precursor protein in Escherichia coli. J Biol Chem 266: 14283–14287 (1991).

    PubMed  Google Scholar 

  9. Ellis RJ, van der Vies SM: Molecular chaperones. Annu Rev Biochem 60: 321–347 (1991).

    Article  PubMed  Google Scholar 

  10. Felsenstein J: Phylogenies from molecular sequences: Inference and reliability. Annu Rev Genet 22: 521–565 (1988).

    Article  PubMed  Google Scholar 

  11. Fillat MF, Bakker HAC, Weisbeek P: Sequence of the ferredoxin-NADP+ reductase from Anabaena PCC 7119. Nucl Acids Res 18: 7161 (1990).

    PubMed  Google Scholar 

  12. Fitch WM, Margoliash E: Construction of phylogenetic trees. Science 155: 279–284 (1967).

    PubMed  Google Scholar 

  13. Gebhart UB, Stefanovic S, Bayer MG, Maier TL, Schenk HEA: Ferredoxin-NADP+-oxidoreductase of Cyanophora paradoxa: purification, partial characterization, N-terminal amino acid sequence. Prot Express Purif 3: 228–235 (1992).

    Google Scholar 

  14. Hartl F-U, Neupert W: Protein sorting to mitochondria: evolutionary conservation of folding and assembly. Science 247: 930–938 (1990).

    PubMed  Google Scholar 

  15. Harlow E, Lane D (eds) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1988).

    Google Scholar 

  16. Henikoff S: Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359 (1984).

    Article  PubMed  Google Scholar 

  17. Jansen T, Reiländer H, Stepphuhn J, Herrmann RG: Analysis of cDNA clones encoding the entire precursor-polypeptide for ferredoxin: NADP+ oxidoreductase from spinach. Curr Genet 13: 517–522 (1988).

    PubMed  Google Scholar 

  18. Janssen I, Jakowitsch J, Michalowski C, Bohnert HJ, Löffelhardt W: Evolutionary relationship of psbA genes from cyanobacteria, cyanelles and plastids. Curr Genet 15: 335–340 (1989).

    PubMed  Google Scholar 

  19. Karplus PA, Daniels MJ, Herriott JR: Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251: 60–66 (1991).

    PubMed  Google Scholar 

  20. Karplus PA, Walsh KA, Herriott JR: Amino acid sequence of spinach ferredoxin: NADP+ oxidoreductase. Biochemistry 23: 6576–6583 (1984).

    PubMed  Google Scholar 

  21. Kraus M, Götz M, Löffelhardt W: The cyanelle str operon from Cyanophora paradoxa: Sequence analysis and phylogenetic implications. Plant Mol Biol 15: 561–573 (1990).

    PubMed  Google Scholar 

  22. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132 (1982).

    PubMed  Google Scholar 

  23. Lüttke A: MacPROT: a set of basic programs for protein structure analysis. Comp Meth Progr Biomed 31: 105–112 (1990).

    Article  Google Scholar 

  24. Lüttke A: On the origin of chloroplasts and rhodoplasts: Protein sequence comparison. Endocyt Cell Res 8: 75–82 (1991).

    Google Scholar 

  25. Michalowski CB, Schmitt JM, Bohnert HJ: Expression during salt stress and nucleotide sequence of cDNA for ferredoxin-NADP+ reductase from Mesembryanthemum crystallinum. Plant Physiol 89: 817–822 (1989).

    Google Scholar 

  26. Neumann-Spallart C, Brandtner M, Kraus M, Jakowitsch J, Bayer MG, Maier TL, Schenk HEA, Löffelhardt W: The petFI gene encoding ferredoxin I is located close to the str operon on the cyanelle genome of Cyanophora paradoxa. FEBS Lett 268: 55–58 (1990).

    Article  PubMed  Google Scholar 

  27. Newman BJ, Gray JC: Characterisation of a full-length cDNA clone for pea ferredoxin-NADP+ reductase. Plant Mol Biol 10: 511–520 (1988).

    Google Scholar 

  28. Saitou N, Nei M: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 (1987).

    PubMed  Google Scholar 

  29. Schenk HEA, Bayer MG, Maier TL, Lüttke A, Gebhart UB, Stevanovic S: Ferredoxin-NADP+-oxidoreductase of Cyanophora paradoxa, nucleus-encoded but cyanobacterial. Gene transfer from symbiont to host, an evolutionary mechanism originating new species. Z Naturforsch 47c: 347–358 (1992).

    Google Scholar 

  30. Schenk HEA: Cyanobacterial symbioses. In: Ballows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, vol. 4 pp. 3819–3854. Springer, New York (1992).

    Google Scholar 

  31. Schenk HEA: Nachweis einer lysozymempfindlichen Stütsmembran der Endocyanellen von Cyanophora paradoxa Korsch. Z Naturforsch 25b: 656 (1970).

    Google Scholar 

  32. Schluchter WM, Bryant DA: Molecular characterization of ferredoxin-NADP+ oxidoreductase in cyanobacteria: cloning and sequence of the petH gene of Synechococcus sp. PCC 7002 and studies on the gene product. Biochemistry 31: 3092–3102 (1992).

    PubMed  Google Scholar 

  33. Shin M, Tsujita M, Tomizawa H, Sakihama N, Kamei K, Oshino R: Proteolytic degradation of ferredoxin-NADP+ reductase during purification from spinach. Arch Biochem Biophys 279: 97–103 (1990).

    PubMed  Google Scholar 

  34. Short JM, Fernandez JM, Sorge JA, Huse WD: Lambda ZAP: a bacteriophage Lambda expression vector with in vivo excision properties. Nucl Acids Res 16: 7583–7600 (1988).

    PubMed  Google Scholar 

  35. Smeekens S, Weisbeek P, Robinson C: Protein transport into and within chloroplasts. Trends Biochem Sci 15: 73–76 (1990).

    Article  PubMed  Google Scholar 

  36. Starnes SM, Lambert DH, Maxwell ES, Stevens SE, Porter RD, Shively JM: Cotranscription of the large and small subunit genes of ribulose-1.5-bisphosphate carboxylase/oxygenase in Cyanophora paradoxa. FEMS Microbiol Lett 28: 165–169 (1985).

    Article  Google Scholar 

  37. von Heijne G: Chloroplast transit peptides: the perfect random coil? FEBS Lett 278: 1–3 (1991).

    Article  PubMed  Google Scholar 

  38. von Heijne G, Steppuhn J, Herrmann RG: Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545 (1989).

    PubMed  Google Scholar 

  39. Wang Y: Double-stranded DNA sequencing with T7 polymerase. Biotechniques 6: 843–845 (1988).

    PubMed  Google Scholar 

  40. Wickner W, Driessen AJM, Hartl F-U: The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem 60: 101–124 (1991).

    Article  PubMed  Google Scholar 

  41. Yao Y, Tamura T, Wada K, Matsubara H, Kodo K: Spirulina ferredoxin-NADP+ reductase. The complete amino acid sequence. J Biochem 95: 1513–1516 (1984).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakowitsch, J., Bayer, M.G., Maier, T.L. et al. Sequence analysis of pre-ferredoxin-NADP+-reductase cDNA from Cyanophora paradoxa specifying a precursor for a nucleus-encoded cyanelle polypeptide. Plant Mol Biol 21, 1023–1033 (1993). https://doi.org/10.1007/BF00023600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023600

Key words

Navigation