Skip to main content

Ultrasonic Monitoring of Fracture Healing

  • Chapter
  • First Online:
Bone Quantitative Ultrasound

Abstract

Quantitative ultrasound has been used to evaluate bone fracture healing for over five decades. Animal and clinical studies have showed that the propagation velocity and attenuation are significantly different between fresh fractures, bone unions, and delayed unions or non-unions. Follow-up measurements have also indicated that the velocity typically increases during healing which makes feasible to monitor the healing progress and early distinguish between normal healing and delayed unions. Researchers have recently used computer simulations aiming to gain insight into the underlying mechanisms of wave propagation in healing bones and interpret real measurements. In this chapter we present the state of the art in the field and provide an extensive review of the relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Secondary healing is the most frequent healing type when an external fixation device is used.

References

  1. T. J. Blokhuis, J. H. de Bruine, J. A. Bramer, F. C. den Boer, F. C. Bakker, P. Patka, H. J. Haarman, and R. A. Manoliu, “The reliability of plain radiography in experimental fracture healing,” Skeletal Radiol. 30(3), 151–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. L. E. Claes, and J. Cunningham, “Monitoring the mechanical properties of healing bone,” Clin. Orthop. Relat. Res. 467(8), 1964–1971 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. J. L. Cunningham, J. Kenwright, and C. J. Kershaw, “Biomechanical measurement of fracture healing,” J. Med. Eng. Technol. 14(3), 92–101 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. J. B. Richardson, J. L. Cunningham, A. E. Goodship, B. T. O’Connor, and J. Kenwright, “Measuring stiffness can define healing of tibial fractures,” J. Bone Joint Surg. Br. 76(3), 389–394 (1994).

    CAS  PubMed  Google Scholar 

  5. Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, “Assessment of fracture healing in the tibia using the impulse response method,” J. Orthop. Trauma 10(1), 50–62 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. G. Nikiforidis, A. Bezerianos, A. Dimarogonas, and C. Sutherland, “Monitoring of fracture healing by lateral and axial vibration analysis,” J. Biomech. 23(4), 323–330 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Hirasawa, S. Takai, W. C. Kim, N. Takenaka, N. Yoshino, and Y. Watanabe, “Biomechanical monitoring of healing bone based on acoustic emission technology,” Clin. Orthop. Relat. Res. 402, 236–244 (2002).

    Article  PubMed  Google Scholar 

  8. V. C. Protopappas, M. G. Vavva, D. I. Fotiadis, and K. N. Malizos, “Ultrasonic monitoring of bone fracture healing,” IEEE Trans. Ultras. Ferroelectr. Freq. Control 55(6), 1243–1255 (2008).

    Article  Google Scholar 

  9. L. P. Floriani, N. T. Debervoise, and G. W. Hyatt, “Mechanical properties of healing bone by use of ultrasound,” Surg. Forum 18, 468–470 (1967).

    Google Scholar 

  10. W. F. Abendschein, and G. W. Hyatt, “Ultrasonics and physical properties of healing bone,” J. Trauma 12(4), 297–301 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. P. J. Gill, G. Kernohan, I. N. Mawhinney, R. A. Mollan, and R. McIlhagger, “Investigation of the mechanical properties of bone using ultrasound,” Proc. Inst. Mech. Eng. 203, 61–63 (1989).

    CAS  Google Scholar 

  12. E. Maylia and L. D. Nokes, “The use of ultrasonics in orthopaedics – a review,” Technol. Health Care 7(1), 1–28 (1999).

    CAS  PubMed  Google Scholar 

  13. S. Saha, V. V. Rao, V. Malakanok, and J.A. Albright, “Quantitative measurement of fracture healing by ultrasound,” in Biomed. Engin. I: Recent Developments, Pergamon Press, New York, 247–249 (1982).

    Google Scholar 

  14. K. N. Malizos, A. A. Papachristos, V. C. Protopappas, and D. I. Fotiadis, “Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model,” Bone 38(4), 530–539 (2006).

    Article  PubMed  Google Scholar 

  15. V. C. Protopappas, D. A. Baga, D. I. Fotiadis, A. C. Likas, A. A. Papachristos, and K. N. Malizos, “An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones,” IEEE Trans. Biomed. Eng. 52(9), 1597–1608 (2005).

    Article  PubMed  Google Scholar 

  16. G. T. Anast, T. Fields, and I. M. Siegel, “Ultrasonic technique for the evaluation of bone fractures,” Am. J. Phys. Med. 37, 157–159 (1958).

    CAS  PubMed  Google Scholar 

  17. J. Saulgozis, I. Pontaga, G. Lowet, and G. Van der Perre, “The effect of fracture and fracture fixation on ultrasonic velocity and attenuation,” Physiol. Meas. 17(3), 201–211 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. M. Gerlanc, D. Haddad, G. W. Hyatt, J. T. Langloh, and P. S. Hilaire, “Ultrasonic study of normal and fractured bone,” Clin. Orthop. Relat. Res. 111, 175–180 (1975).

    Article  PubMed  Google Scholar 

  19. N. Maffulli and A. Thornton, “Ultrasonographic appearance of external callus in long-bone fractures,” Injury 26(1), 5–12 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. M. Risselada, B. H. van, M. Kramer, K. Chiers, L. Duchateau, P. Verleyen, and J. H. Saunders, “Evaluation of nonunion fractures in dogs by use of B-mode ultrasonography, power Doppler ultrasonography, radiography, and histologic examination,” Am. J. Vet. Res. 67(8), 1354–1361, (2006).

    Google Scholar 

  21. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, “An in vitro study of ultrasound signal loss across simple fractures in cortical bone mimics and bovine cortical bone samples,” Bone 40(3), 656–661 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, “Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study,” Ultrasound Med. Biol. 34(3), 454–462 (2008).

    Article  PubMed  Google Scholar 

  23. S. P. Dodd, A. W. Miles, S. Gheduzzi, V. F. Humphrey, and J. L. Cunningham, “Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture,” Comput. Methods Biomech. Biomed. Eng. 10, 371–375 (2007).

    Article  CAS  Google Scholar 

  24. S. Gheduzzi, S. P. Dodd, A. W. Miles, V. F. Humphrey, and J. L. Cunningham, “Numerical and experimental simulation of the effect of long bone fracture healing stages on ultrasound transmission across an idealized fracture,” J. Acoust. Soc. Am. 126(2), 887–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. V. C. Protopappas, I. C. Kourtis, L. C. Kourtis, K. N. Malizos, C. V. Massalas, and D. I. Fotiadis, “Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones,” J. Acoust. Soc. Am. 121(6), 3907–3921 (2007).

    Article  PubMed  Google Scholar 

  26. V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, “Guided ultrasound wave propagation in intact and healing long bones,” Ultrasound Med. Biol. 32(5), 693–708 (2006).

    Article  PubMed  Google Scholar 

  27. J. L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  28. G. Barbieri, C. Barbieri, P. de Matos, C. Pelá, N. Mazzer, “Ultrasonometric evaluation of bone healing: experimental study using a model of diaphyseal transverse osteotomy of sheep tibiae,” Ultrasound Med. Biol. 32(6), 875–882 (2006).

    Article  PubMed  Google Scholar 

  29. G. Lowet and G. Van der Perre, “Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation,” J. Biomech. 29(10), 1255–1262, (1996).

    Article  CAS  PubMed  Google Scholar 

  30. E. Bossy, M. Talmant, and P. Laugier, “Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study,” J. Acoust. Soc. Am. 112(1), 297–307 (2002).

    Article  PubMed  Google Scholar 

  31. C. F. Njeh, J. R. Kearton, D. Hans, and C. M. Boivin, “The use of quantitative ultrasound to monitor fracture healing: a feasibility study using phantoms,” Med. Eng. Phys. 20(10), 781–786 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. J. J Kaufman, L. Gangming, and R. S. Siffert, “Ultrasound simulation in bone,” IEEE Trans. Ultras. Ferroelectr. Freq. Control 55(6), 1205–1218 (2008).

    Google Scholar 

  33. M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “The effect of boundary conditions on guided wave propagation in two-dimensional models of healing bone,” Ultrasonics 48, 598–606 (2008).

    Article  PubMed  Google Scholar 

  34. M. G. Vavva, V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos “Ultrasound velocity measurements on healing bones using the external fixation pins: a two-dimensional simulation study,” J. Serbian Soc. Comput. Mech. 2(2), 1–15 (2008).

    Google Scholar 

  35. P. Moilanen, “Ultrasonic guided waves in bone” IEEE Trans. Ultras. Ferroelectr. Freq. Control 55(6), 1277–1286 (2008).

    Article  Google Scholar 

  36. I. Mirsky, “Wave propagation in transversely isotropic circular cylinders Part I: theory,” J. Acoust. Soc. Am. 37(6), 1016–1021 (1965).

    Article  Google Scholar 

  37. X. Guo, D. Yang, D. Zhang, W. Li, Y. Qiu, and J. Wu, “Quantitative evaluation of fracture healing process of long bones using guided ultrasound waves: a computational feasibility study,” J. Acoust. Soc. Am. 125(5), 2834–2837 (2009).

    Article  PubMed  Google Scholar 

  38. M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone,” J. Acoust. Soc. Am. 125(5), 3414–3427 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilios C. Protopappas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Protopappas, V.C., Vavva, M.G., Malizos, K.N., Polyzos, D., Fotiadis, D.I. (2011). Ultrasonic Monitoring of Fracture Healing. In: Laugier, P., Haïat, G. (eds) Bone Quantitative Ultrasound. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0017-8_14

Download citation

Publish with us

Policies and ethics