Skip to main content

The Biogeochemistry of Biomining

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

Biomining is a technology that harnesses the abilities of certain microorganisms to accelerate the dissolution of minerals, thereby facilitating the recovery of metals of value. In full-scale commercial operations, biomining currently mainly involves using consortia of acidophilic bacteria and archaea to bring about the oxidative dissolution of sulfide minerals. The major ore reserves of many base metals, such as copper and zinc, are sulfidic, and other valuable metals, such as gold and uranium, may also be associated with minerals such as pyrite (FeS2). Where the destruction of minerals leads to the target metal being solubilised, the process of oxidative dissolution is referred to as bioleaching, whereas if the metal become more accessible to chemical extraction but remains in an insoluble form, the process is known more correctly as biooxidation (Fig. 19.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bacelar-Nicolau P, Johnson DB (1999) Leaching of pyrite by acidophilic heterotrophic ­iron-­oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65:585–590

    PubMed  CAS  Google Scholar 

  • Batty JD, Rorke GV (2006) Development and commercial demonstration of the BioCOPTM ­thermophile process. Hydrometallurgy 83:83–89

    Article  CAS  Google Scholar 

  • Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186

    PubMed  CAS  Google Scholar 

  • Bridge TAM, Johnson DB (2000) Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiol J 17:193–206

    Article  CAS  Google Scholar 

  • Brierley CL (2008a) How will biomining be applied in future? Trans Nonferrous Met Soc China 18:1302–1310

    Article  CAS  Google Scholar 

  • Brierley JA (2008b) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7

    Article  CAS  Google Scholar 

  • Coto O, Galizia F, Hernandez I, Marrero J, Donati E (2008) Cobalt and nickel recoveries from lateritic tailings by organic and inorganic bio-acids. Hydrometallurgy 94:18–22

    Article  CAS  Google Scholar 

  • Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279:30–35

    Article  PubMed  CAS  Google Scholar 

  • Davis-Belmar CS, Nicolle JLC, Norris PR (2008) Ferrous iron oxidation and leaching of copper ore with halotolerant bacteria in ore columns. Hydrometallurgy 94:144–147

    Article  CAS  Google Scholar 

  • Donati ER, Sand W (eds) (2007) Microbial processing of metal sulfides. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Dopson M, Halinen A-K, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindstrom EB, Puhakka JA (2006) Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioeng 97:1205–1215

    Article  Google Scholar 

  • Galleguillos P, Hallberg KB, Johnson DB (2009) Microbial diversity and genetic response to stress conditions of extremophilic bacteria isolated from the Escondida copper mine. Adv Mater Res 71–73:55–58

    Article  Google Scholar 

  • Ghauri MA, Okibe N, Johnson DB (2007) Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations. Hydrometallurgy 85:72–80

    Article  CAS  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 50:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    Article  PubMed  CAS  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov., facultatively anaerobic, psychrotolerant iron- and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  PubMed  CAS  Google Scholar 

  • Harvey TJ, Bath M (2007) The GeoBiotics GEOCOATR technology – progress and challenges. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 97–112

    Chapter  Google Scholar 

  • Hiroyoshi N, Miki H, Hirajima T, Tsunekawa M (2000) A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy 57:31–38

    Article  CAS  Google Scholar 

  • Johnson DB (2001) Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147–158

    Article  CAS  Google Scholar 

  • Johnson DB (2009) Extremophiles: acid environments. In: Schaechter M (ed) Encyclopaedia of microbiology. Elsevier, Oxford, pp 107–126

    Chapter  Google Scholar 

  • Johnson DB, Hallberg KB (2007) Techniques for detecting and identifying acidophilic mineral-oxidising microorganisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 237–262

    Chapter  Google Scholar 

  • Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microbiol Physiol 54:202–256

    Google Scholar 

  • Johnson DB, McGinness S (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57:207–211

    PubMed  CAS  Google Scholar 

  • Johnson DB, Stallwood B, Kimura S, Hallberg KB (2006) Isolation and characterization of Acidicaldus organovorus, gen. nov., sp. nov.; a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Arch Microbiol 185:212–221

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP (1978) Bioenergetics of chemolithotrophic bacteria. In: Bull AT, Meadows PM (eds) Companion to microbiology: selected topics for further discussion. Longman, London, pp 363–386

    Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermothiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  • Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen D, Kappler U, McEwan AG, Sly LI (2006) Archaeal diversity in two thermophilic chalcopyrite bioleaching reactors. Environ Microbiol 8:2050–2055

    Article  PubMed  CAS  Google Scholar 

  • Morin DHR, d’Hugues P (2007) Bioleching of a cobalt-containing pyrite in stirred reactors: a case study from the laboratory scale to industrial application. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 35–56

    Chapter  Google Scholar 

  • Morin D, Pinches T, Huisman J, Frias C, Norberg A, Forssberg E (2008) Progress after three years of BioMinE – research and technical development project for a global assessment of biohydrometallurgical processes applied to European non-ferrous metal resources. Hydrometallurgy 94:58–68

    Article  CAS  Google Scholar 

  • Norris PR (2007) Acidophilic diversity in mineral sulfide oxidation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 199–216

    Chapter  Google Scholar 

  • Norris PR, Ingledew WJ (1992) Acidophilic bacteria: adaptations and applications. In: Herbert RA, Sharp RJ (eds) Molecular biology and biotechnology of extremophiles. Blackie, Glasgow, pp 115–142

    Chapter  Google Scholar 

  • Okibe N, Johnson DB (2004) Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: the significance of microbial interactions. Biotechnol Bioeng 87:574–583

    Article  PubMed  CAS  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl Environ Microbiol 69:1936–1943

    Article  PubMed  CAS  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industry. Appl Microbiol Biotechnol 63:249–257

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE (ed) (1997) Biomining: theory, microbes and industrial processes. Springer/Landes Biosciences, Georgetown, TX

    Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13

    Article  PubMed  Google Scholar 

  • Rawlings DE, Johnson DB (eds) (2007a) Biomining. Springer, Heidelberg

    Google Scholar 

  • Rawlings DE, Johnson DB (2007b) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Silver S (1995) Mining with microbes. Biotechnology 13:773–778

    Article  CAS  Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Dew D, du Plessis C (2003) Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44

    Article  PubMed  CAS  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sufide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  PubMed  CAS  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, The Netherlands, pp 3–33

    Chapter  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect ­mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    PubMed  CAS  Google Scholar 

  • Sehlin HM, Lindstrom EB (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93:8–92

    Google Scholar 

  • Steudel R (2000) The chemical sulfur cycle. In: Lens P, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution: principles and engineering. International Association on Water Quality, London, pp 1–31

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley, New York

    Google Scholar 

  • Tributsch H, Rojas-Chapana J (2007) Biological strategies for obtaining energy by degrading sulfide minerals. In: Rwalings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 263–280

    Chapter  Google Scholar 

  • Valdes J, Pedroso I, Quatrini R, Holmes DS (2008) Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: insights into their metabolism and ecophysiology. Hydrometallurgy 94:180–184

    Article  CAS  Google Scholar 

  • Wakeman K, Auvinen H, Johnson DB (2008) Microbiological and geochemical dynamics in simulated heap leaching of a polymetallic sulfide ore. Biotechnol Bioeng 101:739–750

    Article  PubMed  CAS  Google Scholar 

  • Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides – a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  • Welham NJ, Malatt KA, Vukcevic S (2000) The effect of solution speciation on iron-sulphur-arsenic-chloride systems at 298°K. Hydrometallurgy 57:209–223

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author is grateful to the Royal Society (U.K.) for the provision of an Industrial Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Barrie Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Johnson, D.B. (2010). The Biogeochemistry of Biomining. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_19

Download citation

Publish with us

Policies and ethics