Skip to main content

Thermal Damage and Rate Processes in Biologic Tissues

  • Chapter
  • First Online:
Optical-Thermal Response of Laser-Irradiated Tissue

Abstract

Heat is generated in laser irradiated tissues by absorption and transformation of the light energy into heat. Once generated within tissues, heat is heat no matter what original energy source is used to produce it. Heating of cells and biological tissues can produce reversible injury and dysfunction that can be repaired by innate cellular and host mechanisms. However, more severe, irreversible damage leads to death immediately (primary thermal effects) or after (delayed secondary effects) the heating event. Sometimes, the dividing line between reversible (repairable) and irreversible (lethal) damage in living, surviving tissues is not easily observed at the time of heating. Therefore, to determine accurately the extent of effective (killing) thermal treatment, the observer has to wait for all the moribund, injured cells to die and undergo post-mortem necrosis (two-four days) [1–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem. Photobiolog., 53(6):825–835 (1991).

    Google Scholar 

  2. Thomsen S. Identification of lethal thermal injury at the time of photothermal treatment. In: eds. G. Muller and A. Roggan (eds) Intersitial thermotherapy. SPIE, Bellingham, WA, pp. 459–467 (1995).

    Google Scholar 

  3. Thomsen S. Qualitative and quantitative pathology of clinically relevant thermal lesions. SPIE Crit. Rev., CR75:425–459 (2000).

    Google Scholar 

  4. Thomsen S. Non-thermal effects in thermal treatment applications of non-ionizing irradiation. Proc. SPIE., 5698:1–14 (2005).

    Article  ADS  Google Scholar 

  5. Thomsen S and Coad JE. Developing clinically successful biomedical devices by understanding the pathophysiology of the target tissue: Insights from over 25 years at the microscope. Proc. SPIE., 6440:1–15 (2007).

    ADS  Google Scholar 

  6. Kumar,V, Abbas AK, Fausto N, and Mitchell RN. Robbins basic pathology. Saunders-Elsevier, Philadephia, 8th edition, pp. 1–224 (2007).

    Google Scholar 

  7. Lee H-C and Wei Y-H. Mitochondrial role in life and death of the cell. J. Biomed. Sci., 7:2–15 (2000).

    Article  Google Scholar 

  8. Letal A and Scorrano L. Laying the foundations of programmed cell death. Cell Death Differ., 13:1245–1247 (2006).

    Article  Google Scholar 

  9. Chan D, Frank S, and Rojo M. Mitochondrial dynamics in cell life and death. Cell Death and Differ., 13:680–684 (2006).

    Article  Google Scholar 

  10. Coad JE. Thermal fixation: A central outcome of hyperthermic therapies. Proc. SPIE, 5698:15–22 (2005).

    Article  ADS  Google Scholar 

  11. Metz CN. Fibrocytes: A unique cell population implicated in wound healing. Cell. Mol. Life Sci., 60:1342–1350(2003).

    Article  Google Scholar 

  12. Baum CL and Arpey CJ. Normal cutaneous wound healing: Clinical correlation with cellular and molecular events. Dermatol. Surg., 31:674–686 (2005).

    Article  Google Scholar 

  13. Blakytny R and Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabetic Med., 23:594–608 (2006).

    Article  Google Scholar 

  14. Williams P, Bannister LH, Berry MM et al. (eds). Gray’s anatomy. 38th international edition. Churchill-Livingstone. Edinburg, pp. 1–2092 (1995).

    Google Scholar 

  15. Fawcett DW. Textbook of histology. Chapman and Hall, New York, 12th edition, pp. 1–964 (1994).

    Google Scholar 

  16. Ghadiallay FN. Ultrastructural pathology of the cell and matrix, Vols. 1 and 2. Butterworth- Heinemann, Boston, pp. 1–1450 (1997).

    Google Scholar 

  17. Alberts B, Johnson A, Lewis J et al. Molecular biology of the cell. Garland Science, New York, 4th edition, pp. 1–1463 (2002).

    Google Scholar 

  18. Junquiera LC and Carneiro J. Basic histology: Text and atlas. McGraw-Hill, Medical Publishing Division, New York, 11th edition, pp. 1–502 (2005).

    Google Scholar 

  19. Thomsen S. Practical pathology for engineers: How to do the job right the first time. Proc. SPIE, 4754:1–26 (2003).

    Article  Google Scholar 

  20. Welch AJ and van Gemert MJC. (eds). Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp. 1–925 (1995).

    Google Scholar 

  21. Niemz MH. Laser-tissue interactions: Fundamentals and applications. Springer, Berlin, 3rd edition (2004).

    Google Scholar 

  22. Thomsen S, Pearce JA, Randeri R, and Chan E. Determination of isotherms of thermal damage. Proc. IEEE/LEOS, 2295–2296 (1995).

    Google Scholar 

  23. Thomsen S. Mapping thermal injury in biologic tissues using quantitative pathologic techniques. Proc. SPIE., 3595:82–95 (1999).

    Article  Google Scholar 

  24. LeCarpentier GL, Motamedi M, Rastegar S, and Welch AJ. Simultaneous analysis of thermal and mechanical events during cw laser ablation of biological media. Proc. SPIE, 1064:107–113 (1989).

    ADS  Google Scholar 

  25. Verdaasdonk RM, Borst C, and van Gemert MJC. Explosive onset of continuous wave laser tissue ablation. Phys. Med. Biol., 35:1129–1144 (1990).

    Article  Google Scholar 

  26. Gijsbeers GHM, Selten FM, and van Gemert MJC. CW laser ablation velocities as a function of absorption in an experimental one dimentional model. Lasers Surg Med., 11 :287–296 (1991).

    Article  Google Scholar 

  27. Pearce JA and Thomsen S. Rate process analysis of thermal damage. In: AJ Welch and MJD van Gemert (eds) Optical-thermal response of laser irradiated tissue. Plenum, New York, pp. 561–606 (1995).

    Google Scholar 

  28. Protsenko DE and Pearce JA. Thermo-electrical numerical model of electrosurgical RF cutting. Proc. SPIE, 4247:203–209 (2001).

    Article  Google Scholar 

  29. Nelson DL and M.M. Cox MM. Lehninger principles of biochemistry. W.H. Freeman and Co, New York, 4th edition, pp. 1–1119 (2005).

    Google Scholar 

  30. Guyton AG and Hall JE. Textbook of medical physiology. Saunders Elsevier, Philadelphia, 11th edition, pp. 1–1116 (2006).

    Google Scholar 

  31. Bray D. Cell movements: From molecules to motility. Garland, New York, 2nd edition, pp. 1–372 (2001).

    Google Scholar 

  32. Boal D. Mechanics of the cell. University Press. Cambridge, UK, pp. 1–406 (2002).

    Google Scholar 

  33. Ramachandran GN and Ramakrishan C. Molecular structure. In: Ramachandran GN and Reddi AH (eds) Biochemistry of Collagen. Plenum, New York. pp. 45–84 (1976).

    Google Scholar 

  34. Fleischmajer R, Olsen BR, and Kühn K. Biology, chemistry and pathology of collagen. Annals NY Acad. Sci., 460:1–537 (1985) and 580:1–592 (1990).

    Article  Google Scholar 

  35. Uitto J and Perejda AJ. Connective tissue disease: molecular pathology of the extracellular matrix. Marcel Decker, New York, pp. 1–563 (1987).

    Google Scholar 

  36. Chadwick DJ and Goode JA (eds). The molecular biology and pathology of elastic tissues. Ciba symposium 192. Wiley, New York, pp. 1–351 (1995).

    Google Scholar 

  37. Flory P and Garrett RR. Phase transitions in collagen and gelatin systems. J. Am. Chem. Soc., 80:4836–4845 (1958).

    Article  Google Scholar 

  38. Lim JJ. Transition temperature and enthalpy change dependence on stabilizing and destabilizing ion in the helix coil transition in native tendon collagen. Biopolymers 15:2371–2381 (1976).

    Article  Google Scholar 

  39. Maitland DJ and Walsh JT Jr. Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg. Med., 20:310–318 (1997).

    Article  Google Scholar 

  40. Yoshimura H, Viator JA, and Jacques SL. Relationship between damaged fraction and reflected spectra of denaturing tissues. Lasers Surg. Med., 37:308–313 (2005).

    Article  Google Scholar 

  41. Schmidt SJ. Die Doppelbrechung von karyoplasma, zytoplasma und metaplasma. In: Protoplasma-Monographien. Vol. II. Verlag von Gebruder Borntraeger, Berlin, pp. 154–267 (1937).

    Google Scholar 

  42. Fisher E. The birefringence of striated and smooth muscles. J. Cell. Comp. Physiol., 23:11–130 (1944).

    Article  Google Scholar 

  43. Peckham M and Irvin M. Myosin crossbridge orientation in demembranated muscle fibres studied by birefringence and X-ray diffraction measurements. J. Mol. Biol., 210:113–126 (1989).

    Article  Google Scholar 

  44. Harris P and Heath D. Structure and function of vascular smooth muscle. In: The human pulmonary circulation: Its form and function in health and disease. Churchill Livingstone, New York, pp. 161–182 (1986).

    Google Scholar 

  45. Hulmes DJS, Miller A, Parry DAD et al. Crystalline regions in collagen fibrils. J. Mol. Biol., 184:473–477 (1985).

    Article  Google Scholar 

  46. Thomsen S, Pearce JA, and Cheong W-F. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans. Biomed. Eng., BME-36:1174–1179 (1989).

    Article  Google Scholar 

  47. Thomsen S. Quantitative morphologic markers of laser thermal injury in cardiovascular muscle. Proc. SPIE, 1878:152–158 (1993).

    Article  ADS  Google Scholar 

  48. Thomsen S, Jacques SL, and Flock S: Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium. Proc. SPIE, 1202:2–11 (1990).

    Article  ADS  Google Scholar 

  49. Thomsen S, Vijverberg H, Huang R, Schwartz J. Changes in optical properties of rat skin during thermal coagulation. Proc. SPIE, 1882:230–236 (1993).

    Article  ADS  Google Scholar 

  50. Fielding CJ (ed). Lipid Rafts and Caveolae: From membrane biophysics to cell biology. Wiley-VCH, New York, pp. 1–294 (2006).

    Google Scholar 

  51. Moussa NA, Tell EN, and Cravalho EG. Time progression of hemolysis of erythrocyte populations exposed to supraphysiological temperatures. Trans. ASME J. Biomech. Eng., 101:176–184 (1979).

    Article  Google Scholar 

  52. Lepock JR, Frey HE, Bayne H, Markus J. Relationship of hyperthermia-induced hemolysis of human erythrocytes to the thermal denaturation of membrane proteins. Biochim. Biophys. Acta, 980:191–201 (1989).

    Article  Google Scholar 

  53. Bernardi, P, Scorrano L, Colonna R, Petronelli V, and Di Lisa F. Mitochondria and cell death: Mechanistic aspects and methodological issues. Eur. J. Biochem., 264:687–701 (1999).

    Article  Google Scholar 

  54. Van Cruchten, S and Van den Brobeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat. Histol. Embryol., 31:214–223 (2002).

    Article  Google Scholar 

  55. Shoshan-Barmatz V, Israelson A, Brdiczda D, and Sheu SS. The voltage-dependent anion channel (VDAC): Function in intracellular signaling, cell life and cell death. Curr. Pharm. Des., 12:2349–2270 (2006).

    Article  Google Scholar 

  56. Kim J-S, He L, Qian T, and Lemasters JJ. Role of the mitochondrial permeability transition in apoptotoc and necrotic death after ischemia/reperfusion injury o hepatocytes. Curr. Mol. Med., 3:527–235 (2003).

    Article  Google Scholar 

  57. Anghieri LJ and Robert J. Hyperthermia in cancer treatment. CRC, Boca Raton (1986).

    Google Scholar 

  58. van der Zee J. Heating the patient: A promising approach? Ann. Oncol., 13:1173–1184 (2002).

    Article  Google Scholar 

  59. Beynon, R and Bond JS. Proteolytic enzymes. University Press. Oxford, 2nd edition, pp. 1–340 (2001).

    Google Scholar 

  60. Thomsen S, Schwartz JA, Joseph R, Pearce JA, Rae B, and McMurray TJ. Temperatures associated with thermally induced red blood cell changes in tissues irradiated in vivo. Proc. SPIE, 2130:156–163 (1994).

    Article  ADS  Google Scholar 

  61. Milleron RS and Bratton SB. “Heated” debates in apoptosis. Cell. Mol. Life Sci., 64:2329–2333 (2007).

    Article  Google Scholar 

  62. Cohen IK, Diegelmann RF, and Lindblad WJ. Wound healing: Biochemical and clinical aspects. W.B. Saunders, Philadelphia, pp. 1–630 (1992).

    Google Scholar 

  63. Falanga V. Cutaneous wound healing. Martin Dinitz, London, pp. 1–484 (2001).

    Google Scholar 

  64. DiPietro LA and Burns AL. Wound healing; Methods and protocols. Humana, Totowa, NJ, pp. 1–453 (2003).

    Google Scholar 

  65. Grey JE and Harding KG. ABC of wound healing. Blackwell, Malden, MA, pp. 1–47 (2006).

    Google Scholar 

  66. Keenan JH and Keyes FG. Thermodynamic properties of steam, 1st edition, 19th printing. Wiley, New York (1948).

    Google Scholar 

  67. Van Wylen GJ. Thermodynamics. Wiley, New York (1964).

    Google Scholar 

  68. Reynolds WC. Thermodynamics. McGraw-Hill, New York (1970).

    Google Scholar 

  69. Torres JH, Motamedi M, Pearce JA, and Welch AJ. Experimental evaluation of mathematical models for predicting the thermal response of tissue to laser irradiation. Appl. Opt., 32(4):597–606 (1993).

    Article  ADS  Google Scholar 

  70. Brutsaert W. Evaporation into the atmosphere: Theory, history and applications. D. Reidel, Dordrecht, Holland (1982).

    Google Scholar 

  71. Yang D, Converse MC, Mahvi DM, and Webster JG. Expanding the bioheat equation to include internal water evaporation during heating. IEEE Trans. Biomed. Eng., 54(8):1382–11388 (2007).

    Article  Google Scholar 

  72. Moritz AR and Henriques FC. Studies of thermal injury II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am. J. Pathol., 23:695–720 (1947).

    Google Scholar 

  73. Moritz AR. Studies of thermal injury III. The pathology and pathogenesis of cutaneous burns: An experimental study. Am. J. Pathol., 23: 915–934 (1947).

    Google Scholar 

  74. Henriques FC and Moritz AR. Studies of thermal injury in the conduction of heat to and through skin and the temperatures attained therein: A theoretical and experimental investigation. Am. J. Path., 23:531–549 (1947).

    Google Scholar 

  75. Henriques FC. Studies of thermal injury V. The predictability and significance of thermally induced rate processes leading to irreversible epidermal injury. Arch. Pathol., 43:489–502 (1947).

    Google Scholar 

  76. Maron SH and Lando JB. Fundamentals of physical chemistry. McMillan, New York (1974).

    Google Scholar 

  77. Pearce JA, Thomsen S, Vijverberg H, and McMurray T. Kinetics for birefringence changes in thermally coagulated rat skin collagen. Proc. SPIE, 1876:180–186 (1993).

    Article  ADS  Google Scholar 

  78. Welch AJ and Polhamus GD. Measurement and prediction of thermal injury in the retina of Rhesus monkey. IEEE Trans. Biomed. Eng., 31:633–644 (1984).

    Article  Google Scholar 

  79. Takata AN et al. Thermal model of laser induced eye damage. Final Report, USAF School of Aerospace Medicine, Brooks AFB TX, Contract F41609-74-C-0005, IIT Research Institute, Chicago, IL (1974).

    Google Scholar 

  80. Birngruber R. Thermal modeling in biological tissue. In: F Hillenkamp, R Pratesi, and CA Sacchi (eds) Lasers in biology and medicine, Plenum, New York, pp. 77–97 (1980).

    Google Scholar 

  81. Birngruber R, Hillenkamp F, and Gabel VP. Theoretical investigations of laser thermal retinal injury. Health Phys., 48(6):781–796 (1985).

    Article  Google Scholar 

  82. Diller KR, Pearce JA, and Valvano JW. Bioheat transfer, Chapter 4, Section 4. In: CRC Handb. Therm. Eng., (cat. no. 9581), pp. 4–114, 4–187 (2000).

  83. Weaver JA, and Stoll AM. Mathematical model of skin exposed to thermal radiation. Aerospace Med., 40(1):24 (1969).

    Google Scholar 

  84. Yang Y, Welch AJ, and Rylander HG. Rate process parameters of albumen. Lasers Surg. Med., 11:188–190 (1991).

    Article  Google Scholar 

  85. Sapareto SA. Physical aspects of hyperthermia. G Nussbaum (ed). American. Institute of Physics, Chapter 1 (1982).

  86. Beckham JT, Mackanos MA, Crooke C, Takahashi T, O’Connell-Rodwell C, Contag CH, and Jansen ED. Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70. Photochem. Photobiol., 79:76–85 (2004).

    Article  Google Scholar 

  87. Diller KR and Klutke GA. Accuracy analysis of the Henriques model for predicting burn injury. Advances in Bioheat and Mass Transfer, AM. Soc. Mech. Eng., New York, 268 (1993).

    Google Scholar 

  88. Wu YC. A modified criterion for predicting thermal injury. Nat. Bur. Stand. Washington, District of Columbia (1982).

    Google Scholar 

  89. Fugitt CE. A rate process of thermal injury. Armed Forces Special Weapons Project No. AFSWP-606 (1955).

    Google Scholar 

  90. Takata AN. Development of criterion for skin burns. Aerospace Med., 45:634–637 (1974).

    Google Scholar 

  91. VassiliadisA, Christian HC, and Dedrick KG. Ocular laser threshold investigations. Aerospace Med. Rep., F41609-70-0002 (1971).

    Google Scholar 

  92. Miles CA. Kinetics of collagen denaturation in mammalian lens capsules studied by differential scanning calorimetry. Int. J. Biol. Macromol., 15:265–271 (1993).

    Article  Google Scholar 

  93. Jacques SL and Prahl SA. Modeling optical and thermal distributions in tissue during laser irradiation. Lasers Surg. Med., 6:494–503 (1987).

    Article  Google Scholar 

  94. Gaylor DC. Physical mechanism of cellular injury in electrical trauma. Ph.D. Thesis, Department of Electrical Engineering, Massachusetts Institute of Technology (1989).

    Google Scholar 

  95. Toner M, Cravalho EG, Gaylor DC, and Lee RC. Cellular mechanisms of thermal injury in electrical trauma. Proc. Ann. Conf. Eng. Med. Biol., 4:1505–1506 (1990).

    Google Scholar 

  96. Lee RC Gaylor DC, Prakah-Asante K, Bhatt D, and Israel DA. Skeletal muscle cell rupture by pulsed electric fields. IEEE Eng. Med. Biol. Soc. Annu. Conf., 712–714 (1987).

    Google Scholar 

  97. Jacques SL and Gaeeni MO. Thermally induced changes in optical properties of heart. IEEE Eng. Med. Biol. Mag. 11(Part 4/6):1199–1200 (1989).

    Google Scholar 

  98. Agah R, Gandjbakhche AH, Motamedi M, Nossal R, and Bonner RF. Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration. IEEE Trans. Biomed. Eng., 43(8):839–846 (1996).

    Article  Google Scholar 

  99. Flock ST, Smith L, and Waner MD. Quantifying the effects on blood of irradiation with four different vascular-lesion lasers. Proc. SPIE, 1882: 237–242 (1993).

    Article  ADS  Google Scholar 

  100. Jacques SL, Newman C, and He XY. Thermal coagulation of tissues: Liver studies indicate a distribution of rate parameters not a single rate parameter describes the coagulation process. Proc. Winter Annu. Meeting Am. Soc. Mech. Eng. (1991).

    Google Scholar 

  101. Matthewson K, Coleridge-Smith P, O’Sullivan JP, Northfield TC, and Bown SG. Biological effects of intrahepatic neodymium:yttrium-aluminum-garnet laser photocoagulation in rats. Gastroenterology, 93:550–557 (1987).

    Google Scholar 

  102. Jacques SL, Motamedi M, and Rastegar S. Computer simulation of laser coagulation of prostate: A guide to dosimetry. Am Soc. Lasers Med. Surg. Lasers Surg. Med., Suppl 5, abstract 311 (1993).

    Google Scholar 

  103. Skinner MG, Everts S, Reid AD, Vitkin IA, Lilge L, and Sherar MD. Changes in optical properties of ex vivo rat prostate due to heating. Phys. Med. Biol., 45:1375–1386 (2000).

    Article  Google Scholar 

  104. He X, McGee S, Coad JE, Schmidlin F, Iaizzo PA, Swanlund DJ, Kluge S, Rudie E, and Bischof JC. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int. J. Hyperthermia, 20:567–593 (2004).

    Article  Google Scholar 

  105. Pop M, Molckovsky A, Chin L, Kolios MC, Jewett MA, and Sherar MD. Changes in dielectric properties at 460 kHz of kidney and fat during heating: Importance for radio-frequency thermal therapy. Phys. Med. Biol., 48:2509–2525 (2003).

    Article  Google Scholar 

  106. Pearce JA and Thomsen S. Arrhenius model thermal damage coefficients for birefringence loss in rabbit myocardium. Proc. ASME Int’l. Mech. Eng. Conf. Expos., IMECE2003-41986 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Thomsen, S., Pearce, J.A. (2010). Thermal Damage and Rate Processes in Biologic Tissues. In: Welch, A., van Gemert, M. (eds) Optical-Thermal Response of Laser-Irradiated Tissue. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8831-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-8831-4_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8830-7

  • Online ISBN: 978-90-481-8831-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics