Skip to main content
Log in

Mitochondrial role in life and death of the cell

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Mitochondria are the major ATP producer of the mammalian cell. Moreover, mitochondria are also the main intracellular source and target of reactive oxygen species (ROS) that are continually generated as by-products of aerobic metabolism in human cells. A low level of ROS generated from the respiratory chain was recently proposed to take part in the signaling from mitochondria to the nucleus. Several structural characteristics of mitochondria and the mitochondrial genome enable them to sense and respond to extracellular and intracellular signals or stresses in order to sustain the life of the cell. It has been established that mitochondrial respiratory function declines with age, and that defects in the respiratory chain increase the production of ROS and free radicals in mitochondria. Within a certain concentration range, ROS may induce stress responses of the cell by altering the expression of a number of genes in order to uphold energy metabolism to rescue the cell. However, beyond this threshold, ROS may elicit apoptosis by induction of mitochondrial membrane permeability transition and release of cytochrome c. Intensive research in the past few years has established that mitochondria play a pivotal role in the early phase of apoptosis in mammalian cells. In this article, the role of mitochondria in the determination of life and death of the cell is reviewed on the basis of recent findings gathered from this and other laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JM, Cory S. The Bcl-2 protein family: Arbiters of cell survival. Science 281:1322–1326;1998.

    Google Scholar 

  2. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z. Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334;1999.

    Google Scholar 

  3. Agarwal S, Sohal RS. Differential oxidative damage to mitochondrial proteins during aging. Mech Ageing Dev 85:55–63;1995.

    Google Scholar 

  4. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922;1993.

    Google Scholar 

  5. Ames BN, Shigenaga MK, Hagen TM. Mitochondrial decay in aging. Biochim Biophys Acta 1271:165–170;1995.

    Google Scholar 

  6. Ammendola R, Mesuraca M, Russo T, Cimino F. The DNA-binding efficiency of Sp1 is affected by redox changes. Eur J Biochem 225:483–489;1994.

    Google Scholar 

  7. Angel P, Karin M. The role of jun, fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1072:129–157;1991.

    Google Scholar 

  8. Baeuerle PA. The inducible transcription factor NF-κB: Regulation by distinct protein subunits. Biochim Biophys Acta 1072:63–80;1991.

    Google Scholar 

  9. Bakker HD, Scholte HR, Van Den Bogert C, Ruitenbeek W, Jeneson JAL, Wanders RJA, Abeling NGGM, Dorland B, Senger RCA, van Gennip AH. Deficiency of the adenine nucleotide translocator in muscle of a patient with myopathy and lactic acidosis: A new mitochondrial defect. Pediatr Res 33:412–417;1993.

    Google Scholar 

  10. Barrientos A, Casademont J, Cardellach F, Estivill X, Urbano-Marquez A, Nunes V. Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Mol Brain Res 52:284–289;1997.

    Google Scholar 

  11. Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M, Kotlikoff M, Avadhani NG. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: A novel model of inter-organelle crosstalk. EMBO J 18:522–533;1999.

    Google Scholar 

  12. Bladier C, Wolvetang EJ, Hutchinson P, de Haan JB, Kola I. Response of a primary human fibroblast cell line to H2O2: Senescence-like growth arrest or apoptosis. Cell Growth Differ 8:589–598;1997.

    Google Scholar 

  13. Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794;1995.

    Google Scholar 

  14. Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD, Ames BN. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 332:43–50;1998.

    Google Scholar 

  15. Clayton DA. Replication of animal mitochondrial DNA. Cell 28:693–705;1982.

    Google Scholar 

  16. Clayton DA, Doda JN, Friedberg EC. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 71:2777–2781;1974.

    Google Scholar 

  17. Cupler EJ, Danon MJ, Jay C, Hench K, Ropka M, Dalakas MC. Early features of zidovudine-associated myopathy: Histopathological findings and clinical correlations. Acta Neuropathol 90:1–6;1995.

    Google Scholar 

  18. del Peso L, Gonzales-Garcia M, Page C, Herrara R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689;1997.

    Google Scholar 

  19. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50;1998.

    Google Scholar 

  20. Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 96:4820–4825;1999.

    Google Scholar 

  21. Evan G, Littlewood T. A matter of life and cell death. Science 281:1317–1321;1998.

    Google Scholar 

  22. Evans MJ Scarpulla RC. NRF-1: Atrans-activator of nuclear-encoded respiratory genes in animal cells. Gene Dev 4:1023–1034;1990.

    Google Scholar 

  23. Fahn HJ, Wang LS, Kao SH, Chang SC, Huang MH, Wei YH. Smoking-associated mitochondrial DNA mutations and lipid peroxidation in human lung tissues. Am J Respir Cell Mol Biol 19:901–909;1998.

    Google Scholar 

  24. Fernandez-Silva SP, Petruzzela V, Fracasso F, Gadaleta MN, Cantatore P. Reduced synthesis of mtRNA in isolated mitochondria of senescent rat brain. Biochem Biophys Res Commun 176:645–653;1992.

    Google Scholar 

  25. Gadaleta MN, Rainaldi G, Lezza AMS, Milella F, Fracasso F, Cantatore P. Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutat Res 275:181–193;1992.

    Google Scholar 

  26. Gomez del Arco P, Martinez-Martinez S, Calvo V, Armesilla AL, Rendondo JM. JNK is target for antioxidants in T lymphocytes. J Biol Chem 271:26335–26340;1996.

    Google Scholar 

  27. Gopalakrishnan L, Scarpulla RC. Structure, expression, and chromosomal assignment of the human gene encoding nuclear respiratory factor 1. J Biol Chem 270:18019–18025;1995.

    Google Scholar 

  28. Green DR, Reed JC. Mitochondria and apoptosis. Science 281:1309–1312;1998.

    Google Scholar 

  29. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142;1996.

    Google Scholar 

  30. Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human heart. Biochem Biophys Res Commun 189:979–985;1992.

    Google Scholar 

  31. Heddi A, Lestienne P, Wallace DC, Stepien G. Mitochondrial DNA expression in mitochondrial myopathies and coordinated expression of nuclear genes involved in ATP production. J Biol Chem 268:12156–12163;1993.

    Google Scholar 

  32. Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of IκB is necessary for activation of transcription factor NF-κB. Nature 365:182–185;1993.

    Google Scholar 

  33. Hruszkewycz AM. Lipid peroxidation and mtDNA degeneration. A hypothesis. Mutat Res 275:243–248;1992.

    Google Scholar 

  34. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G. Bcl-xL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 95:4386–4391;1998.

    Google Scholar 

  35. Johnson FB, Sinclair DA, Guarente L. Molecular biology of aging. Cell 96:291–302;1999.

    Google Scholar 

  36. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JC, Ord T, Bredesen DE. Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 262:1274–1277;1993.

    Google Scholar 

  37. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136;1997.

    Google Scholar 

  38. Kovalenko SA, Kopsidas G, Islam MM, Heffeman D, Fitzpatric J, Caragounis A, Gingold E, Linnane AW. The age-associated decrease in the content of amplifiable full-length mitochondrial DNA in human skeletal muscle. Biochem Mol Biol Int 46:1233–1241;1998.

    Google Scholar 

  39. Kovalenko SA, Kopsidas G, Kelso JM, Linnane AW. Deltoid human muscle mtDNA is extensively rearranged in old age subjects. Biochem Biophys Res Commun 232:147–152;1997.

    Google Scholar 

  40. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC. Investigation of the subcellular distribution of the Bcl-2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membrane. Cancer Res 53:4701–4714;1993.

    Google Scholar 

  41. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642;1998.

    Google Scholar 

  42. Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124;1997.

    Google Scholar 

  43. Larsson NG, Oldfors A, Holme E, Clayton DA. Low levels of mitochondrial transcription factor A in mitochondrial DNA depletion. Biochem Biophys Res Commun 200:1374–1381;1994.

    Google Scholar 

  44. Lee HC, Lim ML, Lu CY, Liu VW, Fahn HJ, Zhang C, Nagley P, Wei YH. Concurrent increase of oxidative DNA damage and lipid peroxidation together with mitochondrial DNA mutation in human lung tissues during aging — Smoking enhances oxidative stress on the aged tissues. Arch Biochem Biophys 362:309–316;1999.

    Google Scholar 

  45. Lee HC, Lu CY, Fahn HJ, Wei YH. Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett 441:292–296;1998.

    Google Scholar 

  46. Lee HC, Pang CY, Hsu HS, Wei YH. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta 1226:37–43;1994.

    Google Scholar 

  47. Lee HC, Wei YH. Mutation and oxidative damage of mitochondrial DNA and defective turnover of mitochondria in human aging. J Formos Med Assoc 96:770–778;1997.

    Google Scholar 

  48. Li K, Neufer D, Williams RS. Nuclear responses to depletion of mitochondrial DNA in human cells. Am J Physiol 269:C1265-C1270;1995.

    Google Scholar 

  49. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489;1997.

    Google Scholar 

  50. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptic program in cell-free extracts: Requirement for ATP and cytochrome c. Cell 86:147–157;1996.

    Google Scholar 

  51. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions down-stream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184;1997.

    Google Scholar 

  52. Lo YYC, Wong JMS, Cruz TF. Reactive oxygen species mediate cytokine activation of c-Jun NH2 terminal kinase. J Biol Chem 271:15703–15707;1996.

    Google Scholar 

  53. Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res 423:11–21;1999.

    Google Scholar 

  54. Luciakova K, Li R, Nelson BD. Differential response of the transcript levels of some nuclear-encoded and mitochondrial-encoded respiratory chain components in response to grwoth activation. Eur J Biochem 207:253–257;1992.

    Google Scholar 

  55. Luo X, Budihardjo I, Zou H, Slaughter C, Wang XD. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490;1998.

    Google Scholar 

  56. Martin ME, Chinenov Y, Schmidt TK, Yang XY. Redox regulation of GA-binding protein-α DNA binding activity. J Biol Chem 271:25617–25623;1996.

    Google Scholar 

  57. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HLA, Prevost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031;1998.

    Google Scholar 

  58. Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ, Wallace DC. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96:846–851;1999.

    Google Scholar 

  59. Meyer M, Schreck R, Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant response factor. EMBO J 12:2005–2015;1993.

    Google Scholar 

  60. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB. Bcl-xL forms an ion channel in synthetic lipid membranes. Nature 385:353–357;1997.

    Google Scholar 

  61. Miranda S, Foncea R, Guerrero J, Leighton F. Oxidative stress and upregulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 258:44–49;1999.

    Google Scholar 

  62. Miyako K, Kai Y, Irie T, Takeshige K, Kang D. The content of intracellular mitochondrial DNA is decreased by 1-methyl-4-phenylpyridinium ion (MPP+). J Biol Chem 272:9605–9608;1997.

    Google Scholar 

  63. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Changs BS, Thompson CB, Wong S, Ng S, Fesik SW. X-ray and NMR structure of human Bcl-xL, and inhibitor of programmed cell death. Nature 381:335–341;1996.

    Google Scholar 

  64. Murakami T, Shimomura Y, Yoshimura A, Sokabe M, Fujitsuka N. Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle. Biochim Biophys Acta 1381:113–122;1998.

    Google Scholar 

  65. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis inXenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79:353–364;1994.

    Google Scholar 

  66. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619;1993.

    Google Scholar 

  67. Pan G, O'Rourke K, Dixit VM. Caspase-9, Bcl-xL, and Apaf-1 form a ternary complex. J Biol Chem 273:5841–5845;1998.

    Google Scholar 

  68. Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta 1276:87–105;1996.

    Google Scholar 

  69. Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273:7770–7775;1998.

    Google Scholar 

  70. Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607;1996.

    Google Scholar 

  71. Remacle J, Raes M, Toussaint O, Renard P, Rao G. Low levels of reactive oxygen species as modulators of cell function. Mutat Res 316:103–122;1995.

    Google Scholar 

  72. Renis M, Cantatore P, Polosa PL, Fracasso F, Gadaleta MN. Content of mitochondrial DNA and of three mitochondrial RNAs in developing and adult cerebellum. J Neurochem 52:750–754;1989.

    Google Scholar 

  73. Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schnizer M, Suter M, Walter P, Yaffee M. Oxidants in mitochondria: From physiology to disease. Biochim Biophys Acta 1271:67–74;1995.

    Google Scholar 

  74. Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 136:507–513;1988.

    Google Scholar 

  75. Ruvolo PP, Deng X, Carr BK, May WS. A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 273:25436–25442;1998.

    Google Scholar 

  76. Scarpulla RC. Nuclear control of respiratory chain expression in mammalian cells. J Bioenerg Biomembr 29:109–119;1997.

    Google Scholar 

  77. Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ. Comparison of the ion channel characteristics of proapoptotic Bax and antiapoptotic Bcl-2. Proc Natl Acad Sci USA 94:11357–11362;1997.

    Google Scholar 

  78. Schon EA, Bonilla E, DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr 29:131–149;1997.

    Google Scholar 

  79. Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: An oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17:221–237;1992.

    Google Scholar 

  80. Seger R, Kreb EG. The MAPK signaling cascade. FASEB J 9:726–735;1995.

    Google Scholar 

  81. Shadel GS, Clayton DA. Mitochondrial transcription initiation. J Biol Chem 268:16083–16086;1993.

    Google Scholar 

  82. Shay JW, Pierce DJ, Werbin H. Mitochondrial DNA copy number is proportional to total cell DNA under a variety of growth conditions. J Biol Chem 265:14802–14807;1990.

    Google Scholar 

  83. Shimizu S, Eguchi Y, Kamiike W, Waguri S, Uchiyama Y, Matsuda H, Tsujimoto Y. Bcl-2 blocks loss of mitochondrial membrane potential while ICE inhibitors act at a different step during inhibition of death induced by respiratory chain inhibitors. Oncogene 13:21–29;1996.

    Google Scholar 

  84. Skulachev VP. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423:275–280;1998.

    Google Scholar 

  85. Sohal RS, Sohal BH. Hydrogen peroxide release by mitochondria increases during aging. Mech Ageing Dev 57:187–202;1991.

    Google Scholar 

  86. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446;1999.

    Google Scholar 

  87. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost MC, Alzari PM, Kroemer G. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189:381–393;1999.

    Google Scholar 

  88. Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M. Resistance to Fas-mediated apoptosis: Activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IPA gene family ILP. Oncogene 17:931–940;1998.

    Google Scholar 

  89. Suzuki A, Tsutomi Y, Yamamoto N, Shibutani T, Akahane K. Mitochondrial regulation of cell death: Mitochondria are essential for procaspase 3-p21 complex formation to resist Fasmediated cell death. Mol Cell Biol 19:3842–3847;1999.

    Google Scholar 

  90. Suzuki H, Kumagai T, Goto A, Sugiura T. Increase in intracellular hydrogen peroxide and upregulation of a nuclear respiratory gene evoked by impairment of mitochondrial electron transfer in human cells. Biochem Biophys Res Commun 249:542–545;1998.

    Google Scholar 

  91. Takao M, Aburatani H, Kobayashi K, Yasui A. Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res 26:2917–2922;1998.

    Google Scholar 

  92. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462;1995.

    Google Scholar 

  93. Torroni A, Stepien G, Hodge JA, Wallace DC. Neoplastic transformation is associated with coordinate induction of nuclear and cytoplasmic oxidative phosphorylation genes. J Biol Chem 265:20589–20593;1990.

    Google Scholar 

  94. Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: Possible factor in ageing. Lancet i:637–639;1989.

    Google Scholar 

  95. van der Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3:159–167;1999.

    Google Scholar 

  96. van der Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637;1997.

    Google Scholar 

  97. Wallace DC. Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212;1992.

    Google Scholar 

  98. Wei YH. Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 217:53–63;1998.

    Google Scholar 

  99. Wei YH, Scholes CP, King TE. Ubisemiquinone radicals from the cytochromeb-c 1 complex of mitochondrial electron transport chain — Demonstration of QP-S radical formation. Biochem Biophys Res Commun 99:1411–1419;1981.

    Google Scholar 

  100. Wiesner RJ, Kurowski TT, Zak R. Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome c oxidase in rat liver and skeletal muscle. Mol Endocrinol 6:1458–1467;1992.

    Google Scholar 

  101. Williams RS. Mitochondrial gene expression in mammalian striated muscle. Evidence that variation in gene dosage is the major regulatory event. J Biol Chem 261:12390–12394;1986.

    Google Scholar 

  102. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1282;1997.

    Google Scholar 

  103. Wong A, Cortopassi G. MtDNA mutations confer cellular sensitivity to oxidant stress that is partially rescued by calcium depletion and cyclosporin A. Biochem Biophys Res Commun 239:139–145;1997.

    Google Scholar 

  104. Xia Y, Buja M, Scarpulla RC, McMillin JB. Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc Natl Acad Sci USA 94:11399–11404;1997.

    Google Scholar 

  105. Yakes FM, van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519;1997.

    Google Scholar 

  106. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng II, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132;1997.

    Google Scholar 

  107. Yen TC, Chen SH, King KL, Wei YH. Liver mitochondrial respiratory functions decline with age. Biochem Biophys Res Commun 65:994–1003;1989.

    Google Scholar 

  108. Zha H, Fisk HA, Yaffe MP, Mahajan N, Herman B, Reed JC. Structure-functiona comparisons of the pro-apoptotic protein Bax in yeast and mammalian cells. Mol Cell Biol 16:6494–6508;1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HC., Wei, YH. Mitochondrial role in life and death of the cell. J Biomed Sci 7, 2–15 (2000). https://doi.org/10.1007/BF02255913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255913

Key Words

Navigation