Skip to main content

An Introduction to South American Wetland Forests: Distribution, Definitions and General Characterization

  • Chapter
  • First Online:
Amazonian Floodplain Forests

Part of the book series: Ecological Studies ((ECOLSTUD,volume 210))

Abstract

This chapter provides an introduction to the ecology of wetland forests, their ecophysiology, distribution, species diversity, classification and use, with emphasis on Amazonia. Wetland forests occur in all continents and all regions except in deserts, high altitudes, and high latitudes. Their importance for humans and the environment is often underestimated because in developed or densely colonized regions such as Europe, North America, Australia, and the Indian sub-continent, many of them have already been destroyed or strongly modified. In other regions, such as Siberia, the Zaire River basin and the Amazon River basin they still cover large areas; however, scientists and politicians have placed little emphasis on their study and protection, or on developing sustainable management practices. In this chapter, we describe the general terminology for wetland forests and provide a classification of Amazonian wetland forests. We discuss the distribution of major wetland forests in South America and the impact of hydrology and nutrient status of water and soils. Distribution, species diversity, and the level of adaptation of trees of wetland forests is the result of long periods of evolution, without major extinction episodes. These conditions prevailed for many millions of years in the Amazon basin as shown by paleo-climatic and paleo-botanical evidence, leading to the development of the most species rich and highly adapted floodplain forest on the globe. In light of this history, we give examples for specific adaptations and survival strategies. Finally, Amazonian wetlands have been colonized by humans since their arrival on the sub-continent, about 12,000 years BP. More recently, European immigrants have used the wetlands for fishing, subsistence agriculture, timber exploitation and increasingly for cattle and water-buffalo ranching. Large scale ranching activities are especially detrimental for the forested Amazonian wetlands, because ranchers destroy wetland forests to increase the area of natural and planted pastures. This is also detrimental for forestry, fisheries, and the maintenance of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong W, Brändle RA, Jackson MB (1994) Mechanism of flood tolerance in plants. Acta Botanica Neerlandica 43(4):307–358

    CAS  Google Scholar 

  • Ayres JM (1986) Uakaris and Amazonian flooded forest. Dissertation, Cambridge

    Google Scholar 

  • Ayres JM (1993) As matas de várzea do Mamirauá. In: Sociedade civil Mamirauá (ed) Estudos de Mamirauá, vol.1. Sociedade civil Mamirauá, Mamirauá, pp 1–123

    Google Scholar 

  • Berg CC (1972) Olmediae, Brosimeae. Flora Neotrop 7:171

    Google Scholar 

  • Blom CWPM (1990) Responses of flooding in weeds from river areas. In: Kawane S (ed) Biological approaches and evolutionary trends in plants. Academic Press, London, pp 81–94

    Google Scholar 

  • Bongers F, Engelen D, Klinge H (1985) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the Bana woodland. Vegetatio 63:13–24

    Article  Google Scholar 

  • Burnham RJ, Johnson KR (2004) South American palaeobotany and the origins of neotropical rainforests. Phil Trans R Soc Lond B 359:1595–1610

    Article  Google Scholar 

  • Crawford RMM (1969) The physiological basis of flooding tolerance. Ber Dtsch Bot Ges 82(1/2):111–114

    CAS  Google Scholar 

  • Davis CC, Bel CD, Matthews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. Proc Natl Acad Sci 99:6833–6837

    Article  PubMed  CAS  Google Scholar 

  • Denevan WM (1976) The aboriginal population of Amazonia. In: Denevan WM (ed) The native population of the Americas. University of Wisconsin Press, Madison, pp 205–234

    Google Scholar 

  • Dister E (1983) Zur Hochwassertoleranz von Auenwaldbäumen and lehmigen Standorten. Verhandlungen der Gesellschaft für Ökologie 10:325–336

    Google Scholar 

  • Ducke A (1913) Explorações scientíficas no Estado do Pará. Bol Museu Paraense E Goeldi 7:100–198

    Google Scholar 

  • Ducke A (1949) Arvores amazônicas e sua propagação. Bol Museu Paraense E Goeldi 10:81–92

    Google Scholar 

  • Ducke A, Black GA (1953) Phytogeographical notes on the Brazilian Amazon. Anais Acad Brasil Ciênc 25:1–46

    Google Scholar 

  • Eva HD, Miranda EE, Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimaraes M, Elvidge C, Achard F, Belward AS, Batholomé E, Baraldi A, Grandi D, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. European Commission, Joint Research Centre, EUR 20159 EN, p 34

    Google Scholar 

  • Ferreira CS, Figueira AVO, Gribel R, Wittmann F, Piedade MTF (2010) Genetic variability, divergence and speciation in trees of periodically flooded forests of the Amazon: a case study of Himatanthus sucuuba (SPRUCE) WOODSON. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:47–68. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Furch K, Junk WJ (1997b) The chemical composition, food value and decomposition of herbaceous plants and leaf-litter of the floodplain forest. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Stud 126:187–206. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Gentil JML (1988) A juta na agricultura de várzea na área de Santarém – Méio Amazonaas. Bol Museu Paraense E Goeldi 4(2):118–199

    Google Scholar 

  • Gessner F (1968) Zur ökologischen Problematik der Überschwemmungswälder des Amazonas. Int Rev Ges Hydrobiol 53(4):525–547

    Article  Google Scholar 

  • Godoy JR, Petts G, Salo J (1999) Riparian flooded forests of the Orinoco and Amazon basin: a comparative review. Biodivers Conserv 8:551–586

    Article  Google Scholar 

  • Goulding M (1980) The fishes and the forest, exploration in Amazonian natural history. University of California Press, Berkeley/Los Angeles/London

    Google Scholar 

  • Goulding M, Smith NJH, Mahar DJ (1996) Floods of fortune: ecology and economy along the Amazon. Columbia University Press, New York, p 193

    Google Scholar 

  • Grime JP (1989) The stress debate: symptom of impending synthesis? Biol J Linn Soc 37:3–17

    Article  Google Scholar 

  • Hamilton S, Sippel S., Calheiros D., Melack J (1999) Chemical characteristics of Pantanal waters. In: EMBRAPA (ed) Anais do II Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal, Corumbá, 1996. EMBRAPA, Corumbá, pp 89–100

    Google Scholar 

  • Hendry GAF, Brocklebank KJ (1985) Iron-induced oxygen radical metabolism in waterlogged plants. New Phytol 101:199–206

    Article  CAS  Google Scholar 

  • Huber J (1910) Matas e madeiras amazônicas. Boletim do Museo Goeldi Belém 6:91–203

    Google Scholar 

  • Huber O (1982) Significance of savanna vegetation in the Amazon territory of Venezuela. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 221–244

    Google Scholar 

  • Hueck K (1966) Die Wälder Südamerikas. Gustav Fischer Verlag, Stuttgart, pp 422

    Google Scholar 

  • Ilhardt BL, Verry ES, Palik BJ (2000) Defining riparian areas. In: Verry ES, Hornbeck JW, Dolloff CA (eds) Riparian management in forests of the continental eastern United States. Lewis Publishers, Boca Raton/London/New York/Washington DC, pp 23–42

    Google Scholar 

  • Irion G (1984a) Clay minerals of Amazon soils. In: Sioli H (ed) The Amazon – limnology and landscape ecology of a mighty tropical river and its Basin, pp 537–579. The Hague, Boston, Lancaster (Dr. W. Junk)

    Google Scholar 

  • Irmler U (1977) Inundation–forest types in the vicinity of Manaus. Biogeographica 8:17–29

    Google Scholar 

  • Ishima IH (1998) Estudos dendrocronológicos e determinação da idade de árvores das matas ciliares do Pantanal Sul-Matogrossense. Dissertation, Universidade Federal de São Carlos, São Carlos

    Google Scholar 

  • Joly CA (1991) Flooding tolerance in tropical trees. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic Publishing bV, The Hague, pp 23–34

    Google Scholar 

  • Joly CA, Crawford RMM (1982) Variation in tolerance and metabolic responses to flooding in some tropical trees. J Experiment Bot 33:799–809

    Article  Google Scholar 

  • Junk WJ (1980) Áreas inundáveis - um desafio para limnologia. Acta Amazonica 10(4):775–795

    Google Scholar 

  • Junk WJ (1983) Ecology of swamps in the Middle Amazon. In: Gore AJP (ed) Ecosystems of the world. Mires: Swamp, Bog, Fen and Moor, B. Regional Studies. Elsevier, Amsterdam, pp 269–294

    Google Scholar 

  • Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, New York, pp 47–64

    Google Scholar 

  • Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739

    Google Scholar 

  • Junk WJ (ed) (1997a) The Central Amazon floodplains. Ecology of a pulsing system. Springer, Berlin/Heidelberg/New York, pp 525

    Google Scholar 

  • Junk WJ (1997b) General aspects of floodplain ecology with special reference to Amazonian floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecolog Studies 126:3–20. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Junk WJ (2002) Long-term environmental trends and the future of tropical wetlands. Environ Conserv 29(4):414–435

    Article  Google Scholar 

  • Junk WJ (2005) Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. Verh Int Ver Theor Angew Limnol 29(1):11–38

    Google Scholar 

  • Junk WJ, Barley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Junk WJ, Piedade MTF (1997) Plant life in the floodplain with special reference to herbaceous plants. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. Ecolog Stud 126:147–186. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) (2000a) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers b.V, Leiden

    Google Scholar 

  • Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches, and applications – an update. In: Welcomme RL, Petr T (eds) Proceedings of the second international symposium on the management of large rivers for fisheries, vol 2. Food and agriculture organization & Mekong River commission. FAO Regional Office for Asia and the Pacific, Bangkok. RAP Publication 2004/16, pp 117–149

    Google Scholar 

  • Junk WJ, Piedade MTF (2004) Status of knowledge, ongoing research, and research needs in Amazonian wetlands. Wetlands Ecol Manage 12:597–609

    Article  Google Scholar 

  • Junk WJ, Piedade MTF (2005) Amazonian wetlands. In: Fraser LH, Keddy PA (eds) Large wetlands: their ecology and conservation. Cambridge University Press, Cambridge, pp 63–117

    Google Scholar 

  • Kalliola R, Puhakka M, Danjoy W (1993) Amazonia Peruana – Vegetacion humeda tropical en el llano subandino. Gummerus Printing, Jyväskylä

    Google Scholar 

  • Keel SHK, Prance GT (1979) Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazonica 9:645–655

    Google Scholar 

  • Kellman M, Tackaberry R, Brokaw N, Meave J (1994) Tropical gallery forests. Natl Geo Res Explor 10(1):92–103

    Google Scholar 

  • Klinge H (1978a) Litter production in tropical ecosystems. Malayan Nat J 30(2):415–422

    Google Scholar 

  • Klinge H, Medina E, Herrera R (1977) Studies on the ecology of Amazon Caatinga forest in southern Venezuela. Acta Cient Venez 28:270–276

    CAS  Google Scholar 

  • Klinge H, Medina E (1979) Rio Negro caatingas and campinas, Amazonas States of Venezuela and Brazil. In: Specht RL (ed) Heathlands and related shrublands. Descriptive studies. Ecosystems of the World, vol 9A. Elsevier, Amsterdam, pp 483–488

    Google Scholar 

  • Klinge H, Junk WJ, Revilla CJ (1990) Status and distribution of forested wetlands in tropical South America. Forest Ecol Manage 33/34:81–101. Elsevier, Amsterdam

    Google Scholar 

  • Kubitzki K (1989a) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304

    Article  Google Scholar 

  • Kubitzki K (1989b) Amazonas-Tiefland und Guayana-Hochland – historische und ökologische Aspekte der Florenentwicklung. Amazoniana 11:1–12

    Google Scholar 

  • Lacerda LD, Conde JE, Kjerfve B, Alvarez-León R, Alarcón A, Polanía J (2002) American Mangroves. In: Lacerda LD (ed) Mangrove ecosystems. Function and management. Springer, Berlin/Heidelberg/New York, pp 1–62

    Google Scholar 

  • Lopez OR, Kursar TA (1999) Flood tolerance of four tropical tree species. Tree Physiol 19:925–932

    Article  PubMed  Google Scholar 

  • Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MCSL, Wesselingh F (1998) The stage for neotropical fish diversification. In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS (eds) Phylogeny and classification of Neotropical fishes. EDIPUCRS, Porto Alegre, pp 13–48

    Google Scholar 

  • McCormick JF (1979) A summary of the national riparian symposium. In: U.S. department of agriculture, forest service (ed) Strategies for protection and management of floodplain wetlands and other riparian ecosystems, Ge Tech Rep WO-12 US. Department of Agriculture, Forest Service, Washington DC, pp 362–363

    Google Scholar 

  • Meave J, Kellman M (1994) Maintenance of rain forest diversity in riparian forests of tropical savannas: implications for species conservation during Pleistocene drought. J Biogeogr 21:121–135

    Article  Google Scholar 

  • Meave J, Kellman M, MacDougall A, Rosales J (1991) Riparian habitats as tropical forest refugia. Global Ecol Biogeogr Lett 1:69–76

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New York

    Google Scholar 

  • Moreira E (1970) Os Igapós e seu aproveitaniento. Imprensa Universitaria, Belém – Pará

    Google Scholar 

  • Nunes da Cunha C, Junk WJ (1999) Composição florística de capões e cordilheiras: localização das espécies lenhosas quanto ao gradiente de inundação no Pantanal de Poconé, MT – Brasil. In: EMBRAPA (ed) Anais do II Simpósio sobre Recursos Naturais e Sócio-economicos do Pantanal. Manejo e Conservação. EMBRAPA, Corumbá, pp 17–28

    Google Scholar 

  • Odum EP (1981) Foreword. In: Clark JR, Benforado J (eds) Wetlands of bottomland hardwood forests. Elsevier, Amsterdam, pp 8–10

    Google Scholar 

  • Ohly JJ (2000a) Artificial pastures on Central Amazonian floodplains. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The Central Amazon floodplain: actual use and options for a sustainable management. Backhuys Publishers bV, Leiden, The Netherlands, pp 291–311

    Google Scholar 

  • Oliveira Wittmann A de, Lopes A, Conserva A dos S, Piedade MTF (2010) Germination and seedling establishment in floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of extremely flood tolerant trees of Amazonian floodplains. Annal Bot 105(1):129–139

    Google Scholar 

  • Piedade MTF, Ferreira CS, Oliveira Wittmann A de, Buckeride M, Parolin P (2010) Biochemistry of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Pires JM (1961) Esboço fitogeografico da Amazonia. Rev Soc Agron Vet Pará 7:3–8

    Google Scholar 

  • Prance GT (1973) Phytogeographic support to the theory of Pleistocene forest refuges in the Amazon basin. Acta Amazonica 3:5–28

    Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38

    Article  Google Scholar 

  • Puhakka M, Kalliola R (1993) La vegetación en áreas de inundación en la selva baja de la Amazonia Peruana. In: Kalliola R, Puhakka M, Danjoy W (eds) Amazonia Peruana: Vegetación húmeda tropical en el llano subandino. Proyecto Amazonia, Turku, pp 113–138

    Google Scholar 

  • Queiroz HL, Peralta N (2010) Protected areas in Amazonian várzea and their role in its conservation: the case of Mamirauá Sustainable Development Reserve (MSDR). In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Richards PW (1952) The tropical rain forest. Cambridge University Press, London

    Google Scholar 

  • Rodrigues RR (2000) Uma discussão nomenclatural das formações ciliares. In: Rodrigues RR, Leitão Filho H de F (eds) Matas ciliares: conservação e recuperação. EDUSP, FAPESP, São Paulo, pp 91–99

    Google Scholar 

  • Rodrigues WA (1961) Estudo preliminar de mata de várzea alta de uma ilha do baixo Rio Negro de solo argiloso e umido. Publicação número 10 do Instituto Nacional de Pesquisas da Amazônia, Manaus

    Google Scholar 

  • Roosevelt AC (1999) Twelve thousand years of human-environment interaction in the Amazon Floodplain. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. The New York Botanical Garden Press, New York, pp 371–392

    Google Scholar 

  • Rosales J, Petts G, Knab-Vispo C (2001) Ecological gradients in riparian forests of the lower Caura River, Venezuela. Plant Ecol 152(1):101–118

    Google Scholar 

  • Salo J, Kalliola R, Häkkinen L, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258

    Article  Google Scholar 

  • Scholander PF, Perez MO (1968) Sap tension in flooded trees and bushes of the Amazon. Plant Physiol 43:1870–1873

    Article  PubMed  CAS  Google Scholar 

  • Sioli H (1956) Über Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10(2):89–109

    Google Scholar 

  • Sioli H (1984a) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk Publishers, The Netherlands

    Google Scholar 

  • Spruce R (1908) Notes of a botanist on the Amazon and Andes. MacMillan, London

    Google Scholar 

  • Steyermark JA (1982) Relationships of some Venezuelan refuges with lowland tropical Floras. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 182–220

    Google Scholar 

  • Takeuchi M (1962) The structure of the Amazonian vegetation. 6. Igapó. J Fac Sci Univ Tokyo Sect Bot 3:297–304

    Google Scholar 

  • Thomaz SM, Agostinho AA, Hahn NS (2004) The upper Paraná River and its floodplain: physical aspects, ecology and conservation. Blackhuys Publishers, Leiden

    Google Scholar 

  • Voesenek LACJ, van der Sman AJM, Harren FJM, Blom CWPM (1992) An amalgamation between hormone physiology and plant ecology: a review on flooding resistance and ethylene. J Plant Growth Regulat 11(3):171–188

    Article  CAS  Google Scholar 

  • Wantzen KM (2003) Cerrado streams – characteristics of a threatened freshwater ecosystem type on the tertiary shields of Central South America. Amazoniana 17(3/4):481–502

    Google Scholar 

  • Wantzen KM, Jule C, Tockner K, Junk WJ (2007) Riparian wetlands of tropical streams.In: Dudgeon D, Cressa C (eds) Tropical stream ecology. Elsevier, London

    Google Scholar 

  • Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecol Management 196:199–212

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Montero JC, Motzer M, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347

    Article  Google Scholar 

  • Worbes M (1983) Vegetationskundliche Untersuchungen zweier Überschwemmungswälder in Zentralamazonien – vorläufige Ergebnisse. Amazoniana 8(1):47–66

    Google Scholar 

  • Worbes M (1984) Periodische Zuwachszonen an Bäumen zentralamazonischer Überschwemmung­swälder. Naturwissenschaften 71:157–158

    Article  Google Scholar 

  • Worbes M, Junk WJ (1989) Dating tropical trees by Means of 14C from Bomb tests. Ecology 70(2):503–507

    Article  Google Scholar 

  • Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Zeilhofer P (1996) Geoökologische Charakterisierung des nördlichen Pantanal von Mato Grosso, Brasilien, anhand multitemporaler Landsat Thematic Mapper-Daten. Dissertation, Herbert Utz Verlag, München

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang J. Junk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Junk, W.J., Piedade, M.T.F. (2010). An Introduction to South American Wetland Forests: Distribution, Definitions and General Characterization. In: Junk, W., Piedade, M., Wittmann, F., Schöngart, J., Parolin, P. (eds) Amazonian Floodplain Forests. Ecological Studies, vol 210. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8725-6_1

Download citation

Publish with us

Policies and ethics