Skip to main content

Allelic Diversity for Candidate Genes and Association Studies: Methods and Results

  • Conference paper
  • First Online:
Sustainable use of Genetic Diversity in Forage and Turf Breeding

Abstract

The increasing ease with which molecular markers can be generated makes it possible for plant geneticists to use these genomic technologies for better exploitation of the available genetic variation in breeding populations. Identifying markers based on conventional bi-parental mapping populations is most likely not the best way to implement a marker assisted selection (MAS) program, although this approach is useful for introgression of alleles from wild germplasm. Instead, association mapping may be used in a more practical approach, by measuring both phenotypes and markers directly on the plants in the breeding nursery. Conventional quantitative trait loci (QTL) mapping enables one to identify chromosomal regions of 5–20 cM containing genes underlying the trait of interest. However, that still leaves several hundred potential candidate genes. Association mapping enables the exploitation of the wider genetic diversity and incorporate a larger number of recombinations. Synthetic populations used for genetic improvement of self-incompatible crops including many forage and turf species, present a useful tool for incorporating association mapping and genotype building using molecular markers. This is particularly true for traits that have not previously been selected for, since linkage disequilibrium (LD) is less likely to have been built up. We show some preliminary data from a experiment to illustrate population structure, LD and associations with candidate genes in synthetic populations not previously selected for this trait. Some recent research on association analysis in perennial ryegrass and clovers are also reviewed. We also briefly describe genomic selection (GS) that can predict the breeding values of lines in a population by analyzing phenotypes and high-density marker scores as a way to incorporate MAS into the breeding process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen, J.R., Lübberstedt, T. 2003. Functional markers in plants. Trends Plant Sci. 8:554–560.

    Article  PubMed  CAS  Google Scholar 

  • Auzanneau, J., Huyghe, C., Julier, B., Barre, P. 2007. Linkage disequilibrium in synthetic varieties of perennial ryegrass. Theor. Appl. Genet. 115:837–847.

    Article  CAS  Google Scholar 

  • Cogan, N.O.I., Ponting, R.C., Vecchies, A.C., Drayton, M.C., George, J., Dobrowolski, M.P., Sawbridge, T.I., Spangenberg, G.C., Smith, K.F., Forster, J.W. 2006. Gene-associated single nucleotide polymorphism (SNP) discovery in perennial ryegrass (Lolium perenne L.). Mol. Genet. Genom. 276:101–112.

    Article  CAS  Google Scholar 

  • Cogan, N.O.I., Drayton, M.C., Ponting, R.C., Vecchies, A.C., Bannan, N.R., Sawbridge, T.I., Smith, K.F., Spangenberg, G.C., Forster, J.W. 2007. Validation of in silico-predicted genic SNPs in white clover (Trifolium repens L.), an outbreeding alloplyploid species. Mol. Genet. Genom. 277:413–425.

    Article  CAS  Google Scholar 

  • Dracatos, P.M., Cogan, N.O.I., Dobrowolski, M.P., Sawbridge, T.I., Spangenberg, G.C., Smith, K.F., Forster, J.W. 2008. Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet.117:203–219.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, E.L., Sorrells, M.E., Jannink, J.-L. 2009. Genomic selection for crop improvement. Crop Sci. 49:1–12.

    Article  CAS  Google Scholar 

  • Isobe, S., Kölliker, R., Hisano, H., Sasamoto, S., Wada, T., Klimenko, I., Okumura, K., Tabata, S. 2009. Construction of a consensus linkage map for red clover (Trifolium pratense L.). BMC Plant Biol. 9:57.

    Google Scholar 

  • Gupta, P.K., Rustgi, S., Kulwal, P.L. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol. Biol. 57:461–485.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T.F.C. 2001. The genetic architecture of quantitative traits. Ann. Rev. Genet. 33:303–339.

    Google Scholar 

  • Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829.

    PubMed  CAS  Google Scholar 

  • Ponting, R.C., Drayton, M.C., Cogan, N.O.I., Dobrowolski, M.P., Spangenberg, G.C., Smith, K.F., Forster, J.W. 2007. SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol. Genet. Genom. 278:585–597.

    Article  CAS  Google Scholar 

  • Rafalski, A., Morgante, M. 2004. Corn and humans: Recombination and linkage disequilibrium in two genomes of similar size. Trends Genet. 20:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Skøt, L., Humphreys, J., Humphreys, M.O., Thorogood, D., Gallagher, J., Sanderson, R., Armstead, I.P., Thomas, I.D. 2007. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne L. Genetics 177:535–547.

    Article  PubMed  Google Scholar 

  • Smith, K.F., Dobrowolski, M.P., Cogan, N.O.I., Spangenberg, G.C., Forster, J.W. 2009. Utilizing linkage disequilibrium and association mapping to implement candidate gene based markers in perennial ryegrass breeding (pp. 335–340). In: Yamada, T., Spangenberg, G. (eds.), Molecular Breeding of Forage and Turf. Springer Science + Business, New York.

    Google Scholar 

  • Spangenberg, G.S., Forster, J.W., Edwards, D., John, U., Mouradov, A., Emmerling, M., Batley, J., Felitti, S., Cogan, N.O.I., Smith, K.F., Dobrowolski, M.P. 2005. Future directions in the molecular breeding of forage and turf (pp. 83–97). In: Humphreys, M.O. (ed.), Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, The Netherlands.

    Google Scholar 

  • Wong, C.K., Bernardo, R. 2008. Genomewide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116:815–824.

    Article  PubMed  CAS  Google Scholar 

  • Wu, R., Zeng, Z.-B. 2001. Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899–909.

    PubMed  CAS  Google Scholar 

  • Wu, R., Ma, C.-X., Casella, G. 2002. Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160:779–792.

    PubMed  CAS  Google Scholar 

  • Xing, Y., Frei, U., Schejbel, B., Asp, T., Lübberstedt, T. 2008. Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC Plant Biol. 7:43.

    Article  Google Scholar 

  • Yamada, T., Spangenberg, G. (eds.) 2009. Molecular Breeding of Forage and Turf (pp. 1–352). Springer Science + Business Media, New York.

    Google Scholar 

  • Yang, Y., Zhang, J., Hoh, J., Matsuda, F., Xu, P., Lathrop, M., Ott, J. 2003. Efficiency of single-nucleotide polymorphism haplotype estimation from pooled DNA. Proc. Natl. Acad. Sci. USA 100:7225–7230.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Yamada, T., Skøt, L. (2010). Allelic Diversity for Candidate Genes and Association Studies: Methods and Results. In: Huyghe, C. (eds) Sustainable use of Genetic Diversity in Forage and Turf Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8706-5_56

Download citation

Publish with us

Policies and ethics